基于界面元的金属微结构断裂行为的初步数值研究

Seigo Tomiyama, H. Serizawa, T. Hajima, H. Murakawa
{"title":"基于界面元的金属微结构断裂行为的初步数值研究","authors":"Seigo Tomiyama, H. Serizawa, T. Hajima, H. Murakawa","doi":"10.2207/QJJWS.29.109S","DOIUrl":null,"url":null,"abstract":"In order to demonstrate not only the deformation of grain but also the opening and/or sliding at grain boundary, the interface element was introduced into the ordinary finite element method, and this numerical method was applied for examining the microstructural fracture behavior in two-dimensional ideal microstructure obtained through Voronoi tessellations. As for the grain, the anisotropy in elastic modulus due to the grain orientation was taken into account, while the fracture strength at grain boundary was assumed to be related to the boundary energy which could be determined by the atomic disorder at the boundary. From the serial computational results for examining the influences of elastic properties in grain (isotropy and anisotropy), mechanical property at grain boundary (interaction between opening and sliding deformation), and grain configurations, it was revealed that all the factors varied in this research might affect the microstructural fracture behavior. Also, it can be concluded that this numerical method with the interface element can be useful for demonstrating the microstructural fracture behavior including the deformation at grain boundary.","PeriodicalId":23197,"journal":{"name":"Transactions of JWRI","volume":"40 1","pages":"238-240"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Preliminary numerical research of microstructural fracture behavior in metal by using interface element\",\"authors\":\"Seigo Tomiyama, H. Serizawa, T. Hajima, H. Murakawa\",\"doi\":\"10.2207/QJJWS.29.109S\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to demonstrate not only the deformation of grain but also the opening and/or sliding at grain boundary, the interface element was introduced into the ordinary finite element method, and this numerical method was applied for examining the microstructural fracture behavior in two-dimensional ideal microstructure obtained through Voronoi tessellations. As for the grain, the anisotropy in elastic modulus due to the grain orientation was taken into account, while the fracture strength at grain boundary was assumed to be related to the boundary energy which could be determined by the atomic disorder at the boundary. From the serial computational results for examining the influences of elastic properties in grain (isotropy and anisotropy), mechanical property at grain boundary (interaction between opening and sliding deformation), and grain configurations, it was revealed that all the factors varied in this research might affect the microstructural fracture behavior. Also, it can be concluded that this numerical method with the interface element can be useful for demonstrating the microstructural fracture behavior including the deformation at grain boundary.\",\"PeriodicalId\":23197,\"journal\":{\"name\":\"Transactions of JWRI\",\"volume\":\"40 1\",\"pages\":\"238-240\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of JWRI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2207/QJJWS.29.109S\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of JWRI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2207/QJJWS.29.109S","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了既能反映晶粒的变形,又能反映晶界处的张开和滑动,在普通有限元方法中引入界面单元,并应用该数值方法对Voronoi镶嵌得到的二维理想微观结构的微观组织断裂行为进行了研究。对于晶粒,考虑了晶粒取向引起的弹性模量各向异性,而晶界断裂强度则假定与晶界能有关,而晶界能由晶界原子无序度决定。通过对晶粒弹性性能(各向同性和各向异性)、晶界力学性能(开口和滑动变形之间的相互作用)和晶粒形态影响的一系列计算结果,揭示了本研究中所有因素的变化都可能影响微观组织断裂行为。结合界面元的数值计算方法可以较好地反映包括晶界变形在内的微观组织断裂行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preliminary numerical research of microstructural fracture behavior in metal by using interface element
In order to demonstrate not only the deformation of grain but also the opening and/or sliding at grain boundary, the interface element was introduced into the ordinary finite element method, and this numerical method was applied for examining the microstructural fracture behavior in two-dimensional ideal microstructure obtained through Voronoi tessellations. As for the grain, the anisotropy in elastic modulus due to the grain orientation was taken into account, while the fracture strength at grain boundary was assumed to be related to the boundary energy which could be determined by the atomic disorder at the boundary. From the serial computational results for examining the influences of elastic properties in grain (isotropy and anisotropy), mechanical property at grain boundary (interaction between opening and sliding deformation), and grain configurations, it was revealed that all the factors varied in this research might affect the microstructural fracture behavior. Also, it can be concluded that this numerical method with the interface element can be useful for demonstrating the microstructural fracture behavior including the deformation at grain boundary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信