厚钢板高速激光-电弧组合焊接的动态观察(物理、工艺、仪器与测量)

N. Abe, Y. Kunugita, M. Hayashi, Yoshiaki Tsuchitani
{"title":"厚钢板高速激光-电弧组合焊接的动态观察(物理、工艺、仪器与测量)","authors":"N. Abe, Y. Kunugita, M. Hayashi, Yoshiaki Tsuchitani","doi":"10.2351/1.5059717","DOIUrl":null,"url":null,"abstract":"Leading Path Laser-Arc Combination (LPLAC) welding, which consists of laser-arc combination welding with a leading path for the laser beam, enables much deeper penetration than conventional laser-arc combination welding. It also enables higher speed and more stable welding compared with the conventional arc welding with a narrow V groove. To elucidate the reasons for this greater effectiveness, the behavior of the laser plasma, arc plasma, and the molten metal were observed during LPLAC welding using a high-speed video camera operating at 500 frames per second. It was found that the laser plasma stabilized the arc at an optimal distance between the laser and the arc, accounting for the very high speed and deep penetration of this method.Leading Path Laser-Arc Combination (LPLAC) welding, which consists of laser-arc combination welding with a leading path for the laser beam, enables much deeper penetration than conventional laser-arc combination welding. It also enables higher speed and more stable welding compared with the conventional arc welding with a narrow V groove. To elucidate the reasons for this greater effectiveness, the behavior of the laser plasma, arc plasma, and the molten metal were observed during LPLAC welding using a high-speed video camera operating at 500 frames per second. It was found that the laser plasma stabilized the arc at an optimal distance between the laser and the arc, accounting for the very high speed and deep penetration of this method.","PeriodicalId":23197,"journal":{"name":"Transactions of JWRI","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1997-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Dynamic Observation of High Speed Laser-Arc Combination Welding of Thick Steel Plates(Physics, Processes, Instruments & Measurements)\",\"authors\":\"N. Abe, Y. Kunugita, M. Hayashi, Yoshiaki Tsuchitani\",\"doi\":\"10.2351/1.5059717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Leading Path Laser-Arc Combination (LPLAC) welding, which consists of laser-arc combination welding with a leading path for the laser beam, enables much deeper penetration than conventional laser-arc combination welding. It also enables higher speed and more stable welding compared with the conventional arc welding with a narrow V groove. To elucidate the reasons for this greater effectiveness, the behavior of the laser plasma, arc plasma, and the molten metal were observed during LPLAC welding using a high-speed video camera operating at 500 frames per second. It was found that the laser plasma stabilized the arc at an optimal distance between the laser and the arc, accounting for the very high speed and deep penetration of this method.Leading Path Laser-Arc Combination (LPLAC) welding, which consists of laser-arc combination welding with a leading path for the laser beam, enables much deeper penetration than conventional laser-arc combination welding. It also enables higher speed and more stable welding compared with the conventional arc welding with a narrow V groove. To elucidate the reasons for this greater effectiveness, the behavior of the laser plasma, arc plasma, and the molten metal were observed during LPLAC welding using a high-speed video camera operating at 500 frames per second. It was found that the laser plasma stabilized the arc at an optimal distance between the laser and the arc, accounting for the very high speed and deep penetration of this method.\",\"PeriodicalId\":23197,\"journal\":{\"name\":\"Transactions of JWRI\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of JWRI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2351/1.5059717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of JWRI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2351/1.5059717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

超前路径激光-电弧组合焊(lplacc)是一种激光-电弧组合焊,具有激光束的超前路径,比传统的激光-电弧组合焊具有更深的熔深。与传统的窄V型坡口弧焊相比,焊接速度更快,焊接更稳定。为了阐明这种更有效的原因,使用每秒500帧的高速摄像机观察了激光等离子体、电弧等离子体和熔融金属在lplacs焊接过程中的行为。结果表明,激光等离子体使电弧稳定在激光与电弧之间的最佳距离,这说明了该方法具有很高的速度和深穿透性。超前路径激光-电弧组合焊(lplacc)是一种激光-电弧组合焊,具有激光束的超前路径,比传统的激光-电弧组合焊具有更深的熔深。与传统的窄V型坡口弧焊相比,焊接速度更快,焊接更稳定。为了阐明这种更有效的原因,使用每秒500帧的高速摄像机观察了激光等离子体、电弧等离子体和熔融金属在lplacs焊接过程中的行为。结果表明,激光等离子体使电弧稳定在激光与电弧之间的最佳距离,这说明了该方法具有很高的速度和深穿透性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Observation of High Speed Laser-Arc Combination Welding of Thick Steel Plates(Physics, Processes, Instruments & Measurements)
Leading Path Laser-Arc Combination (LPLAC) welding, which consists of laser-arc combination welding with a leading path for the laser beam, enables much deeper penetration than conventional laser-arc combination welding. It also enables higher speed and more stable welding compared with the conventional arc welding with a narrow V groove. To elucidate the reasons for this greater effectiveness, the behavior of the laser plasma, arc plasma, and the molten metal were observed during LPLAC welding using a high-speed video camera operating at 500 frames per second. It was found that the laser plasma stabilized the arc at an optimal distance between the laser and the arc, accounting for the very high speed and deep penetration of this method.Leading Path Laser-Arc Combination (LPLAC) welding, which consists of laser-arc combination welding with a leading path for the laser beam, enables much deeper penetration than conventional laser-arc combination welding. It also enables higher speed and more stable welding compared with the conventional arc welding with a narrow V groove. To elucidate the reasons for this greater effectiveness, the behavior of the laser plasma, arc plasma, and the molten metal were observed during LPLAC welding using a high-speed video camera operating at 500 frames per second. It was found that the laser plasma stabilized the arc at an optimal distance between the laser and the arc, accounting for the very high speed and deep penetration of this method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信