{"title":"Urinary bladder carcinogenic potential of 4,4’-methylenebis(2-chloroaniline) in humanized-liver mice","authors":"Shugo Suzuki, Min Gi, Takuma Kobayashi, Noriyuki Miyoshi, Nao Yoneda, Shotaro Uehara, Yuka Yokota, Ikue Noura, Masaki Fujioka, Arpamas Vachiraarunwong, Anna Kakehashi, Hiroshi Suemizu, Hideki Wanibuchi","doi":"10.1093/toxsci/kfae119","DOIUrl":"https://doi.org/10.1093/toxsci/kfae119","url":null,"abstract":"Occupational exposure to 4,4’-methylenebis(2-chloroaniline) (MOCA) has been linked to an increased risk of bladder cancer among employees in Japanese plants, indicating its significance as a risk factor for urinary bladder cancer. To investigate the role of MOCA metabolism in bladder carcinogenesis, we administered MOCA to non-humanized (F1-TKm30 mice) and humanized-liver mice for 4 and 28 weeks. We compared MOCA-induced changes in metabolic enzyme expression, metabolite formation, and effects on the urinary bladder epithelium in the two models. At week 4, MOCA exposure induced simple hyperplasia, cell proliferation, and DNA damage in the urothelium of the humanized-liver mice, while in the non-humanized mice these effects were not observed. Notably, the concentration of 4-amino-4'-hydroxylamino-3,3'-dichlorodiphenylmethane (N-OH-MOCA) in the urine of humanized-liver mice was more than 10 times higher than that in non-humanized mice at the 4-week mark. Additionally, we observed distinct differences in the expression of cytochrome P450 isoforms between the two models. Although no bladder tumors were detected after 28 weeks of treatment in either group, these findings suggest that N-OH-MOCA significantly contributes to the carcinogenic potential of MOCA in humans.","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":"11 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142265750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yunan Tang, Matthew S Bryant, Miao Li, Seonggi Min, Gregory Pellar, Qiangen Wu, Dong-Jin Yang, Hyun-Ki Kang, Estatira Sepehr, Xiaobo He, Florence McLellen, Sherry M Lewis, James Greenhaw, Jeffrey Fisher, Xiaoxia Yang, Susan Chemerynski, Steven B Yee, Hans Rosenfeldt, R Philip Yeager, Paul C Howard, Shu-Chieh Hu, Pamela Roqué, Reema Goel, Prabha Kc, Jinghai Yi
{"title":"Pharmacokinetic Analysis of Nicotine and Its Metabolites (Cotinine and trans-3′-Hydroxycotinine) in Male Sprague-Dawley Rats Following Nose-Only Inhalation, Oral Gavage, and Intravenous Infusion of Nicotine","authors":"Yunan Tang, Matthew S Bryant, Miao Li, Seonggi Min, Gregory Pellar, Qiangen Wu, Dong-Jin Yang, Hyun-Ki Kang, Estatira Sepehr, Xiaobo He, Florence McLellen, Sherry M Lewis, James Greenhaw, Jeffrey Fisher, Xiaoxia Yang, Susan Chemerynski, Steven B Yee, Hans Rosenfeldt, R Philip Yeager, Paul C Howard, Shu-Chieh Hu, Pamela Roqué, Reema Goel, Prabha Kc, Jinghai Yi","doi":"10.1093/toxsci/kfae120","DOIUrl":"https://doi.org/10.1093/toxsci/kfae120","url":null,"abstract":"Nicotine is an alkaloid found in tobacco. Human exposure to nicotine primarily occurs through the use of tobacco products. To date, limited nicotine pharmacokinetic data in animals have been reported. This study exposed male Sprague-Dawley rats to vehicle (and/or air) or four doses of nicotine via nose-only inhalation (INH), oral gavage (PO), and intravenous (IV) infusion. Plasma, six tissues (brain, heart, lung, liver, kidney, and muscle), and urine were collected at multiple timepoints from 5 minutes to 48 hours post-dose. The concentrations of nicotine, cotinine, and trans-3′-hydroxycotinine (3-OH-cotinine) were determined, and the pharmacokinetic profiles were compared among the four doses for each route. The results indicated that after single nicotine dose, nicotine bioavailability was 53% via PO. Across all the administration routes and doses, nicotine was quickly distributed to all six tissues; kidney had the highest nicotine and cotinine levels, and the lung had the highest 3-OH-cotinine levels; nicotine was metabolized extensively to cotinine and cotinine was metabolized to a lesser extent to 3-OH-cotinine; the elimination of plasma nicotine, cotinine, and 3-OH-cotinine followed first-order kinetics; plasma nicotine had a shorter half-life than cotinine or 3-OH-cotinine; the half-lives of plasma nicotine, cotinine, and 3-OH-cotinine were dose- and route-independent; and nicotine and cotinine were major urinary excretions followed by 3-OH-cotinine. Nicotine, cotinine, and 3-OH-cotinine levels in plasma, tissues, and urine exhibited dose-dependent increases. These study findings improve our understanding of the pharmacokinetics of nicotine, cotinine, and 3-OH-cotinine across different routes of exposure.","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":"189 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142265752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kevin Castillo-Mendieta, Guillermin Agüero-Chapin, José R Mora, Noel Pérez, Ernesto Contreras-Torres, José R Valdes-Martini, Felix Martinez-Rios, Yovani Marrero-Ponce
{"title":"Unraveling the Hemolytic Toxicity Tapestry of Peptides using Chemical Space Complex Networks","authors":"Kevin Castillo-Mendieta, Guillermin Agüero-Chapin, José R Mora, Noel Pérez, Ernesto Contreras-Torres, José R Valdes-Martini, Felix Martinez-Rios, Yovani Marrero-Ponce","doi":"10.1093/toxsci/kfae115","DOIUrl":"https://doi.org/10.1093/toxsci/kfae115","url":null,"abstract":"Peptides have emerged as promising therapeutic agents. However, their potential is hindered by hemotoxicity. Understanding the hemotoxicity of peptides is crucial for developing safe and effective peptide-based therapeutics. Here, we employed chemical space complex networks (CSNs) to unravel the hemotoxicity tapestry of peptides. CSNs are powerful tools for visualizing and analyzing the relationships between peptides based on their physicochemical properties and structural features. We constructed CSNs from the StarPepDB database, encompassing 2004 hemolytic peptides, and explored the impact of seven different (dis)similarity measures on network topology and cluster (communities) distribution. Our findings revealed that each CSN extracts orthogonal information, enhancing the motif discovery and enrichment process. We identified 12 consensus hemolytic motifs, whose amino acid composition unveiled a high abundance of lysine, leucine, and valine residues, while aspartic acid, methionine, histidine, asparagine and glutamine were depleted. Additionally, physicochemical properties were used to characterize clusters/communities of hemolytic peptides. To predict hemolytic activity directly from peptide sequences, we constructed multi-query similarity searching models (MQSSMs), which outperformed cutting-edge machine learning (ML)-based models, demonstrating robust hemotoxicity prediction capabilities. Overall, this novel in silico approach uses complex network science as its central strategy to develop robust model classifiers, to characterize the chemical space and to discover new motifs from hemolytic peptides. This will help to enhance the design/selection of peptides with potential therapeutic activity and low toxicity.","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":"7 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring the Interplay Between Cannabinoids and Thymic Functions","authors":"Marvin Paulo Lins, Igor Santana De Melo","doi":"10.1093/toxsci/kfae114","DOIUrl":"https://doi.org/10.1093/toxsci/kfae114","url":null,"abstract":"Cannabinoids, derived from the Cannabis sativa plant, has garnered increasing attention for its potential therapeutic applications in various diseases. The pharmacologically active compounds in Cannabis, such as delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), exhibit diverse immunomodulatory properties. While studies have explored the effects of cannabinoids on immune function, their specific interactions with the thymus, a primary immune organ critical for T cell development and maturation, remain an intriguing area of investigation. As the thymus plays a fundamental role in shaping the immune repertoire, understanding the interplay between cannabinoids and thymic function may shed light on potential benefits or concerns associated with Cannabis-based therapies. This article aims to provide an overview of the current scientific knowledge regarding the impact of medicinal Cannabis on the thymus and its implications for disease treatment and immune health.","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":"15 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A computational framework to in silico screen for drug-induced hepatocellular toxicity.","authors":"Yueshan Zhao, Ji Youn Park, Da Yang, Min Zhang","doi":"10.1093/toxsci/kfae078","DOIUrl":"10.1093/toxsci/kfae078","url":null,"abstract":"<p><p>Drug-induced liver injury (DILI) is the most common trigger for acute liver failure and the leading cause of attrition in drug development. In this study, we developed an in silico framework to screen drug-induced hepatocellular toxicity (INSIGHT) by integrating the post-treatment transcriptomic data from both rodent models and primary human hepatocytes. We first built an early prediction model using logistic regression with elastic net regularization for 123 compounds and established the INSIGHT framework that can screen for drug-induced hepatotoxicity. The 235 signature genes identified by INSIGHT were involved in metabolism, bile acid synthesis, and stress response pathways. Applying the INSIGHT to an independent transcriptomic dataset treated by 185 compounds predicted that 27 compounds show a high DILI risk, including zoxazolamine and emetine. Further integration with cell image data revealed that predicted compounds with high DILI risk can induce abnormal morphological changes in the endoplasmic reticulum and mitochondrion. Clustering analysis of the treatment-induced transcriptomic changes delineated distinct DILI mechanisms induced by these compounds. Our study presents a computational framework for a mechanistic understanding of long-term liver injury and the prospective prediction of DILI risk.</p>","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":" ","pages":"14-25"},"PeriodicalIF":3.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11347774/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141432890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joseph H Lucas, Qixin Wang, Jiries Meehan-Atrash, Cortney Pang, Irfan Rahman
{"title":"Developmental PFOS exposure alters lung inflammation and barrier integrity in juvenile mice.","authors":"Joseph H Lucas, Qixin Wang, Jiries Meehan-Atrash, Cortney Pang, Irfan Rahman","doi":"10.1093/toxsci/kfae073","DOIUrl":"10.1093/toxsci/kfae073","url":null,"abstract":"<p><p>Emerging epidemiological evidence indicates perfluorooctane sulfonic acid (PFOS) is increasingly associated with asthma and respiratory viral infections. Animal studies suggest PFOS disrupts lung development and immuno-inflammatory responses, but little is known about the potential consequences on respiratory health and disease risk. Importantly, PFOS exposure during the critical stages of lung development may increase disease risk later in life. Thus, we hypothesized that developmental PFOS exposure will affect lung inflammation and alveolar/airway development in a sex-dependent manner. To address this knowledge gap, timed pregnant Balb/cJ dams were orally dosed with a PFOS (1.0 or 2.0 mg/kg/d) injected mealworm or a vehicle control daily from gestational day (GD) 0.5 to postnatal day (PND) 21, and offspring were sacrificed at PND 22-23. PFOS-exposed male offspring displayed increased alveolar septa thickness. Occludin was also downregulated in the lungs after PFOS exposure in mice, indicative of barrier dysfunction. BALF macrophages were significantly elevated at 2.0 mg/kg/d PFOS in both sexes compared with vehicles, whereas BALF cytokines (TNF-α, IL-6, KC, MIP-1α, MIP-1β, and MCP-1) were suppressed in PFOS-exposed male offspring compared with vehicle controls. Multiplex nucleic acid hybridization assay showed male-specific downregulation of cytokine gene expression in PFOS-exposed mice compared with vehicle mice. Overall, these results demonstrate PFOS exposure exhibits male-specific adverse effects on lung development and inflammation in juvenile offspring, possibly predisposing them to later-in-life respiratory disease. Further research is required to elucidate the mechanisms underlying the sex-differentiated pulmonary toxicity of PFOS.</p>","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":" ","pages":"48-60"},"PeriodicalIF":3.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11347778/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141237408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mark C Daley, Marjory Moreau, Peter Bronk, Jeffrey Fisher, Celinda M Kofron, Ulrike Mende, Patrick McMullen, Bum-Rak Choi, Kareen Coulombe
{"title":"In vitro to in vivo extrapolation from 3D hiPSC-derived cardiac microtissues and physiologically based pharmacokinetic modeling to inform next-generation arrhythmia risk assessment.","authors":"Mark C Daley, Marjory Moreau, Peter Bronk, Jeffrey Fisher, Celinda M Kofron, Ulrike Mende, Patrick McMullen, Bum-Rak Choi, Kareen Coulombe","doi":"10.1093/toxsci/kfae079","DOIUrl":"10.1093/toxsci/kfae079","url":null,"abstract":"<p><p>Proarrhythmic cardiotoxicity remains a substantial barrier to drug development as well as a major global health challenge. In vitro human pluripotent stem cell-based new approach methodologies have been increasingly proposed and employed as alternatives to existing in vitro and in vivo models that do not accurately recapitulate human cardiac electrophysiology or cardiotoxicity risk. In this study, we expanded the capacity of our previously established 3D human cardiac microtissue model to perform quantitative risk assessment by combining it with a physiologically based pharmacokinetic model, allowing a direct comparison of potentially harmful concentrations predicted in vitro to in vivo therapeutic levels. This approach enabled the measurement of concentration responses and margins of exposure for 2 physiologically relevant metrics of proarrhythmic risk (i.e. action potential duration and triangulation assessed by optical mapping) across concentrations spanning 3 orders of magnitude. The combination of both metrics enabled accurate proarrhythmic risk assessment of 4 compounds with a range of known proarrhythmic risk profiles (i.e. quinidine, cisapride, ranolazine, and verapamil) and demonstrated close agreement with their known clinical effects. Action potential triangulation was found to be a more sensitive metric for predicting proarrhythmic risk associated with the primary mechanism of concern for pharmaceutical-induced fatal ventricular arrhythmias, delayed cardiac repolarization due to inhibition of the rapid delayed rectifier potassium channel, or hERG channel. This study advances human-induced pluripotent stem cell-based 3D cardiac tissue models as new approach methodologies that enable in vitro proarrhythmic risk assessment with high precision of quantitative metrics for understanding clinically relevant cardiotoxicity.</p>","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":" ","pages":"145-157"},"PeriodicalIF":3.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11347779/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141427608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Endia J Fletcher, Winter S Stubblefield, Justin Huff, Ramsés Santacruz-Márquez, Mary Laws, Emily Brehm, Jodi A Flaws
{"title":"Prenatal exposure to an environmentally relevant phthalate mixture alters serum cytokine levels and inflammatory markers in the F1 mouse ovary.","authors":"Endia J Fletcher, Winter S Stubblefield, Justin Huff, Ramsés Santacruz-Márquez, Mary Laws, Emily Brehm, Jodi A Flaws","doi":"10.1093/toxsci/kfae084","DOIUrl":"10.1093/toxsci/kfae084","url":null,"abstract":"<p><p>Phthalates are used as plasticizers and solvents in consumer products. Virtually 100% of the US population has measurable exposure levels to phthalates, however, the mechanisms by which prenatal exposure to phthalate mixtures affects reproductive health in the offspring remain unclear. Thus, this study tested the hypothesis that prenatal exposure to an environmentally relevant phthalate mixture promotes inflammation in F1 ovarian tissue. Pregnant CD-1 dams were dosed orally with vehicle control (corn oil) or phthalate mixture (20 μg/kg/d, 200 μg/kg/d, 200 mg/kg/d, 500 mg/kg/d). Pregnant dams delivered pups naturally and ovaries and sera from the F1 females were collected at postnatal day (PND) 21, PND 60, 3 mo, and 6 mo. Sera were used to measure levels of C-reactive protein (CRP). Ovaries and sera were used for cytokine array analysis. RNA was isolated from F1 ovaries and used to quantify expression of selected cytokine genes. Prenatal exposure to the mixture significantly increased the levels of CRP at 200 µg/kg/d on PND 21 compared with controls. The mixture altered 6 immune factors in sera at PND 21 and 33 immune factors in the ovary and sera at 6 mo compared with controls. The mixture increased ovarian expression of cytokines at PND 21 and decreased ovarian expression of cytokines at 6 mo compared with controls. These data suggest that prenatal exposure to a phthalate mixture interferes with the immune response in F1 female mice long after initial exposure.</p>","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":" ","pages":"26-37"},"PeriodicalIF":3.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11347776/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141493535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jennifer B Faske, Meagan B Myers, Matthew Bryant, Xiaobo He, Florence McLellen, Todd Bourcier, Barbara L Parsons
{"title":"CarcSeq detection of lorcaserin-induced clonal expansion of Pik3ca H1047R mutants in rat mammary tissue.","authors":"Jennifer B Faske, Meagan B Myers, Matthew Bryant, Xiaobo He, Florence McLellen, Todd Bourcier, Barbara L Parsons","doi":"10.1093/toxsci/kfae070","DOIUrl":"10.1093/toxsci/kfae070","url":null,"abstract":"<p><p>Lorcaserin is a 5-hydroxytryptamine 2C (serotonin) receptor agonist and a nongenotoxic rat carcinogen, which induced mammary tumors in male and female rats in a 2-yr bioassay. Female Sprague Dawley rats were treated by gavage daily with 0, 30, or 100 mg/kg lorcaserin, replicating bioassay dosing but for shorter duration, 12 or 24 wk. To characterize exposure and eliminate possible confounding by a potentially genotoxic degradation product, lorcaserin and N-nitroso-lorcaserin were quantified in dosing solutions, terminal plasma, mammary, and liver samples using ultra-high-performance liquid chromatography-electrospray tandem mass spectrometry. N-nitroso-lorcaserin was not detected, supporting lorcaserin classification as nongenotoxic carcinogen. Mammary DNA samples (n = 6/dose/timepoint) were used to synthesize PCR products from gene segments encompassing hotspot cancer driver mutations, namely regions of Apc, Braf, Egfr, Hras, Kras, Nfe2l2, Pik3ca, Setbp1, Stk11, and Tp53. Mutant fractions (MFs) in the amplicons were quantified by CarcSeq, an error-corrected next-generation sequencing approach. Considering all recovered mutants, no significant differences between lorcaserin dose groups were observed. However, significant dose-responsive increases in Pik3ca H1047R mutation were observed at both timepoints (ANOVA, P < 0.05), with greater numbers of mutants and mutants with greater MFs observed at 24 wk as compared with 12 wk. These observations suggest lorcaserin promotes outgrowth of spontaneously occurring Pik3ca H1047R mutant clones leading to mammary carcinogenesis. Importantly, this work reports approaches to analyze clonal expansion and demonstrates CarcSeq detection of the carcinogenic impact (selective Pik3ca H0147R mutant expansion) of a nongenotoxic carcinogen using a treatment duration as short as 3 months.</p>","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":" ","pages":"129-144"},"PeriodicalIF":3.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11347771/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141293758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Acute exposure to dihydroxyacetone promotes genotoxicity and chromosomal instability in lung, cardiac, and liver cell models.","authors":"Arlet Hernandez, Jenna Hedlich-Dwyer, Saddam Hussain, Hailey Levi, Manoj Sonavane, Tetsuya Suzuki, Hiroyuki Kamiya, Natalie R Gassman","doi":"10.1093/toxsci/kfae075","DOIUrl":"10.1093/toxsci/kfae075","url":null,"abstract":"<p><p>Inhalation exposures to dihydroxyacetone (DHA) occur through spray tanning and e-cigarette aerosols. Several studies in skin models have demonstrated that millimolar doses of DHA are cytotoxic, yet the genotoxicity was unclear. We examined the genotoxicity of DHA in cell models relevant to inhalation exposures. Human bronchial epithelial cells BEAS-2B, lung carcinoma cells A549, cardiomyocyte Ac16, and hepatocellular carcinoma HepG3 were exposed to DHA, and low millimolar doses of DHA were cytotoxic. IC90 DHA doses induced cell cycle arrest in all cells except the Ac16. We examined DHA's genotoxicity using strand break markers, DNA adduct detection by Repair Assisted Damage Detection (RADD), metaphase spreads, and a forward mutation assay for mutagenesis. Similar to results for skin, DHA did not induce significant levels of strand breaks. However, RADD revealed DNA adducts were induced 24 h after DHA exposure, with BEAS-2B and Ac16 showing oxidative lesions and A549 and HepG3 showing crosslink-type lesions. Yet, only low levels of reactive oxygen species or advanced glycation end products were detected after DHA exposure. Metaphase spreads revealed significant increases in chromosomal aberrations in the BEAS-2B and HepG3 with corresponding changes in ploidy. Finally, we confirmed the mutagenesis observed using the supF reporter plasmid. DHA increased the mutation frequency, consistent with methylmethane sulfonate, a mutagen and clastogen. These data demonstrate DHA is a clastogen, inducing cell-specific genotoxicity and chromosomal instability. The specific genotoxicity measured in the BEAS-2B in this study suggests that inhalation exposures pose health risks to vapers, requiring further investigation.</p>","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":" ","pages":"85-102"},"PeriodicalIF":3.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11347775/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141311769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}