Arthur D Stem, Ricardo Scheufen Tieghi, Vaia Lida Chatzi, Nicole Kleinstreuer, Damaskini Valvi, David C Thompson, Vasilis Vasiliou
{"title":"Synergistic Toxicity in Alcohol-Associated Liver Disease and PFAS Exposure.","authors":"Arthur D Stem, Ricardo Scheufen Tieghi, Vaia Lida Chatzi, Nicole Kleinstreuer, Damaskini Valvi, David C Thompson, Vasilis Vasiliou","doi":"10.1093/toxsci/kfaf110","DOIUrl":null,"url":null,"abstract":"<p><p>Alcohol-associated liver disease (ALD) remains a leading contributor to global morbidity and mortality. Chronic ethanol intake drives hepatocellular damage through multiple mechanisms, such as acetaldehyde-induced cytotoxicity, dysregulated lipid metabolism, oxidative stress, and inflammation. Per- and polyfluoroalkyl substances (PFAS) have emerged as major environmental contaminants, characterized by their persistence, bioaccumulation, and capacity to disrupt hepatic function. PFAS share pathogenic pathways with ALD, including interference with mitochondrial function, oxidative stress induction, and steatosis promotion via altered lipid homeostasis. As exposure to PFAS becomes increasingly widespread and the burden of ALD continues to rise, understanding their potential synergistic impact on liver function is crucial. This review synthesizes current findings on the central mechanisms of ALD pathology, summarizes the hepatotoxic effects of PFAS, and explores their converging roles in exacerbating liver injury. Key pathways of interest include shared disruption of fatty acid oxidation, additive oxidative stress, and immunomodulation. The potential for concurrent exposure in high-risk populations (such as occupational groups with elevated PFAS exposure and higher-than-average alcohol use) warrants concern, particularly given these people often face more limited healthcare access. By identifying mechanistic convergences, this review underscores the need for targeted studies that address how common co-exposures to PFAS and alcohol may intensify liver pathology, the value of a systems biology approach for future investigations, and the importance of implementing strategies to mitigate these synergistic hazards.</p>","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxsci/kfaf110","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Alcohol-associated liver disease (ALD) remains a leading contributor to global morbidity and mortality. Chronic ethanol intake drives hepatocellular damage through multiple mechanisms, such as acetaldehyde-induced cytotoxicity, dysregulated lipid metabolism, oxidative stress, and inflammation. Per- and polyfluoroalkyl substances (PFAS) have emerged as major environmental contaminants, characterized by their persistence, bioaccumulation, and capacity to disrupt hepatic function. PFAS share pathogenic pathways with ALD, including interference with mitochondrial function, oxidative stress induction, and steatosis promotion via altered lipid homeostasis. As exposure to PFAS becomes increasingly widespread and the burden of ALD continues to rise, understanding their potential synergistic impact on liver function is crucial. This review synthesizes current findings on the central mechanisms of ALD pathology, summarizes the hepatotoxic effects of PFAS, and explores their converging roles in exacerbating liver injury. Key pathways of interest include shared disruption of fatty acid oxidation, additive oxidative stress, and immunomodulation. The potential for concurrent exposure in high-risk populations (such as occupational groups with elevated PFAS exposure and higher-than-average alcohol use) warrants concern, particularly given these people often face more limited healthcare access. By identifying mechanistic convergences, this review underscores the need for targeted studies that address how common co-exposures to PFAS and alcohol may intensify liver pathology, the value of a systems biology approach for future investigations, and the importance of implementing strategies to mitigate these synergistic hazards.
期刊介绍:
The mission of Toxicological Sciences, the official journal of the Society of Toxicology, is to publish a broad spectrum of impactful research in the field of toxicology.
The primary focus of Toxicological Sciences is on original research articles. The journal also provides expert insight via contemporary and systematic reviews, as well as forum articles and editorial content that addresses important topics in the field.
The scope of Toxicological Sciences is focused on a broad spectrum of impactful toxicological research that will advance the multidisciplinary field of toxicology ranging from basic research to model development and application, and decision making. Submissions will include diverse technologies and approaches including, but not limited to: bioinformatics and computational biology, biochemistry, exposure science, histopathology, mass spectrometry, molecular biology, population-based sciences, tissue and cell-based systems, and whole-animal studies. Integrative approaches that combine realistic exposure scenarios with impactful analyses that move the field forward are encouraged.