Jana Heigwer, Petrus J Steenbergen, Jochen Gehrig, Jens H Westhoff
{"title":"Corticosteroids alter kidney development and increase glomerular filtration rate in larval zebrafish (Danio rerio).","authors":"Jana Heigwer, Petrus J Steenbergen, Jochen Gehrig, Jens H Westhoff","doi":"10.1093/toxsci/kfae085","DOIUrl":"10.1093/toxsci/kfae085","url":null,"abstract":"<p><p>Pharmaceutical drugs and other chemicals can impact organogenesis, either during pregnancy or by postnatal exposure of very preterm infants. Corticosteroids are administered to pregnant women at risk of preterm delivery in order to reduce neonatal morbidity and mortality. In addition, high-dose corticosteroid exposure of very preterm infants regularly serves to maintain blood pressure and to prevent and treat bronchopulmonary dysplasia, a form of chronic lung disease in prematurely born infants. Despite clinical benefits, there is increasing evidence of corticosteroid-mediated short- and long-term detrimental developmental effects, especially in the kidney. Here, we performed a detailed morphological and functional analysis of corticosteroid-mediated effects on pronephros development in larval zebrafish. About 24-h postfertilization (hpf) transgenic Tg(wt1b: EGFP) zebrafish larvae were exposed to a set of natural and synthetic corticosteroids (hydrocortisone, dexamethasone, 6α-methylprednisolone, betamethasone, prednisolone, fludrocortisone, 11-deoxycorticosterone) with varying glucocorticoid and mineralocorticoid potency for 24 h at different concentrations. A semiautomated, multiparametric in vivo workflow enabled simultaneous assessment of kidney morphology, renal FITC-inulin clearance, and heart rate within the same larva. All corticosteroids exerted significant morphological and functional effects on pronephros development, including a significant hypertrophy of the pronephric glomeruli as well as dose-dependent increases in FITC-inulin clearance as a marker of glomerular filtration rate. In conclusion, the present study demonstrates a significant impact of corticosteroid exposure on kidney development and function in larval zebrafish. Hence, these studies underline that corticosteroid exposure of the fetus and the preterm neonate should be carefully considered due to potential short- and long-term harm to the kidney.</p>","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":" ","pages":"216-225"},"PeriodicalIF":3.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141535350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Naomi E Kramer, Courtney E Fillmore, Elizabeth G Slane, Lillie M A Barnett, John J Wagner, Brian S Cummings
{"title":"Insights into brominated flame retardant neurotoxicity: mechanisms of hippocampal neural cell death and brain region-specific transcriptomic shifts in mice.","authors":"Naomi E Kramer, Courtney E Fillmore, Elizabeth G Slane, Lillie M A Barnett, John J Wagner, Brian S Cummings","doi":"10.1093/toxsci/kfae090","DOIUrl":"10.1093/toxsci/kfae090","url":null,"abstract":"<p><p>Brominated flame retardants (BFRs) reduce flammability in a wide range of products including electronics, carpets, and paint, but leach into the environment to result in continuous, population-level exposure. Epidemiology studies have correlated BFR exposure with neurological problems, including alterations in learning and memory. This study investigated the molecular mechanisms mediating BFR-induced cell death in hippocampal cells and clarified the impact of hexabromocyclododecane (HBCD) exposure on gene transcription in the hippocampus, dorsal striatum, and frontal cortex of male mice. Exposure of hippocampus-derived HT-22 cells to various flame retardants, including tetrabromobisphenol-A (current use), HBCD (phasing out), or 2,2',4,4'-tetrabromodiphenyl ether (BDE-47, phased out) resulted in time, concentration, and chemical-dependent cellular and nuclear morphology alterations, alterations in cell cycle and increases in annexin V staining. All 3 BFRs increased p53 and p21 expression; however, inhibition of p53 nuclear translocation using pifthrin-α did not decrease cell death. Transcriptomic analysis upon low (10 nM) and cytotoxic (10 μM) BFR exposure indicated that HBCD and BDE-47 altered genes mediating autophagy-related pathways. Further evaluation showed that BFR exposure increased LC3-II conversion and autophagosome/autolysosome formation, and co-exposure with the autophagy inhibitor 3-methyladenine (3-MA) attenuated cytotoxicity. Transcriptomic assessment of select brain regions from subchronically HBCD-exposed male mice demonstrated alteration of genes mediating vesicular transport, with greater impact on the frontal cortex and dorsal striatum compared with the dorsal and ventral hippocampus. Immunoblot analysis demonstrated no increases in cell death or autophagy markers, but did demonstrate increases in the SNARE binding complex protein SNAP29, specifically in the dorsal hippocampus. These data demonstrate that BFRs can induce chemical-dependent autophagy in neural cells in vitro and provide evidence that BFRs induce region-specific transcriptomic and protein expression in the brain suggestive of changes in vesicular trafficking.</p>","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":" ","pages":"282-299"},"PeriodicalIF":3.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141601804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kodihalli C Ravindra, Kelly A Fader, David Potter, Zaher A Radi, Gary S Friedman, Karrie A Brenneman, Neeta B Amin, Roberta Weiss, Spencer I Danto, Karen Page, Shashi K Ramaiah, Vishal S Vaidya
{"title":"Qualified kidney injury biomarkers demonstrate value during early clinical drug development.","authors":"Kodihalli C Ravindra, Kelly A Fader, David Potter, Zaher A Radi, Gary S Friedman, Karrie A Brenneman, Neeta B Amin, Roberta Weiss, Spencer I Danto, Karen Page, Shashi K Ramaiah, Vishal S Vaidya","doi":"10.1093/toxsci/kfae088","DOIUrl":"10.1093/toxsci/kfae088","url":null,"abstract":"<p><p>Drug-induced kidney injury (DIKI) is of significant concern, both during drug development and in clinical practice. We report a patient-centric approach for clinical implementation of the FDA-qualified kidney safety biomarker panel, highlighting Phase 1 and 2 trials for candidate therapeutics in Pfizer's portfolio (PFE-1 and PFE-2, respectively) that induced kidney tubular injury in rat toxicity studies. Clusterin (CLU), cystatin-C (CysC), kidney injury molecule-1 (KIM-1), N-acetyl-beta-d-glucosaminidase (NAG), neutrophil gelatinase-associated lipocalin (NGAL), and osteopontin (OPN) were measured in urine samples from (i) Phase 1 healthy volunteers (HVs; n = 12) dosed with PFE-1, (ii) Phase 2 rheumatoid arthritis (RA) patients (n = 266) dosed with PFE-2, (iii) lupus patients on standard-of-care therapies (n = 121), and (iv) healthy volunteers (n = 60). The FDA-defined composite measure (CM), calculated as the geometric mean response across the 6 biomarkers, was increased ∼30% in HVs administered 100 mg PFE-1 relative to placebo, providing evidence of DIKI. In contrast, the CM for RA patients dosed with PFE-2 was comparable to placebo controls, helping to de-risk the concern for DIKI at clinically relevant doses. Comparing individual biomarker concentrations across disease states revealed that CLU, KIM-1, NAG, NGAL, and OPN are elevated in the urine of RA and lupus patients (those without severe active proliferative lupus nephritis) relative to HVs. Overall, these case studies demonstrate the value of using the FDA-qualified kidney biomarker panel to guide risk assessment, dose selection, and clinical decision making for novel therapeutics, both in HVs and patient populations.</p>","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":" ","pages":"206-215"},"PeriodicalIF":3.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141601805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sophie Grice, Katy Saide, Liam Farrell, Georgia Wells, Catherine Betts, Sean Hammond, Dean J Naisbitt
{"title":"Immune checkpoint blockade lowers the threshold of naïve T-cell priming to drug-associated antigens in a dose-dependent fashion","authors":"Sophie Grice, Katy Saide, Liam Farrell, Georgia Wells, Catherine Betts, Sean Hammond, Dean J Naisbitt","doi":"10.1093/toxsci/kfae118","DOIUrl":"https://doi.org/10.1093/toxsci/kfae118","url":null,"abstract":"A growing body of clinical and experimental evidence indicates that immune checkpoint blockade enhances patient susceptibility to hypersensitivity reactions to co-administered medications. In this study, we utilized an in vitro T-cell priming assay to demonstrate one of the mechanistic hypotheses on how this occurs; through lowering of the threshold in patients to elicit aberrant T-cell responses. We outline the dependency of de novo T-cell priming responses to drug-associated antigens on dose at initial exposure. Findings support the aforementioned hypothesis and offer an experimental representation of fundamental parameters at play in hypersensitivity reactions to low molecular weight compounds.","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":"54 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142265749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Urinary bladder carcinogenic potential of 4,4’-methylenebis(2-chloroaniline) in humanized-liver mice","authors":"Shugo Suzuki, Min Gi, Takuma Kobayashi, Noriyuki Miyoshi, Nao Yoneda, Shotaro Uehara, Yuka Yokota, Ikue Noura, Masaki Fujioka, Arpamas Vachiraarunwong, Anna Kakehashi, Hiroshi Suemizu, Hideki Wanibuchi","doi":"10.1093/toxsci/kfae119","DOIUrl":"https://doi.org/10.1093/toxsci/kfae119","url":null,"abstract":"Occupational exposure to 4,4’-methylenebis(2-chloroaniline) (MOCA) has been linked to an increased risk of bladder cancer among employees in Japanese plants, indicating its significance as a risk factor for urinary bladder cancer. To investigate the role of MOCA metabolism in bladder carcinogenesis, we administered MOCA to non-humanized (F1-TKm30 mice) and humanized-liver mice for 4 and 28 weeks. We compared MOCA-induced changes in metabolic enzyme expression, metabolite formation, and effects on the urinary bladder epithelium in the two models. At week 4, MOCA exposure induced simple hyperplasia, cell proliferation, and DNA damage in the urothelium of the humanized-liver mice, while in the non-humanized mice these effects were not observed. Notably, the concentration of 4-amino-4'-hydroxylamino-3,3'-dichlorodiphenylmethane (N-OH-MOCA) in the urine of humanized-liver mice was more than 10 times higher than that in non-humanized mice at the 4-week mark. Additionally, we observed distinct differences in the expression of cytochrome P450 isoforms between the two models. Although no bladder tumors were detected after 28 weeks of treatment in either group, these findings suggest that N-OH-MOCA significantly contributes to the carcinogenic potential of MOCA in humans.","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":"11 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142265750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yunan Tang, Matthew S Bryant, Miao Li, Seonggi Min, Gregory Pellar, Qiangen Wu, Dong-Jin Yang, Hyun-Ki Kang, Estatira Sepehr, Xiaobo He, Florence McLellen, Sherry M Lewis, James Greenhaw, Jeffrey Fisher, Xiaoxia Yang, Susan Chemerynski, Steven B Yee, Hans Rosenfeldt, R Philip Yeager, Paul C Howard, Shu-Chieh Hu, Pamela Roqué, Reema Goel, Prabha Kc, Jinghai Yi
{"title":"Pharmacokinetic Analysis of Nicotine and Its Metabolites (Cotinine and trans-3′-Hydroxycotinine) in Male Sprague-Dawley Rats Following Nose-Only Inhalation, Oral Gavage, and Intravenous Infusion of Nicotine","authors":"Yunan Tang, Matthew S Bryant, Miao Li, Seonggi Min, Gregory Pellar, Qiangen Wu, Dong-Jin Yang, Hyun-Ki Kang, Estatira Sepehr, Xiaobo He, Florence McLellen, Sherry M Lewis, James Greenhaw, Jeffrey Fisher, Xiaoxia Yang, Susan Chemerynski, Steven B Yee, Hans Rosenfeldt, R Philip Yeager, Paul C Howard, Shu-Chieh Hu, Pamela Roqué, Reema Goel, Prabha Kc, Jinghai Yi","doi":"10.1093/toxsci/kfae120","DOIUrl":"https://doi.org/10.1093/toxsci/kfae120","url":null,"abstract":"Nicotine is an alkaloid found in tobacco. Human exposure to nicotine primarily occurs through the use of tobacco products. To date, limited nicotine pharmacokinetic data in animals have been reported. This study exposed male Sprague-Dawley rats to vehicle (and/or air) or four doses of nicotine via nose-only inhalation (INH), oral gavage (PO), and intravenous (IV) infusion. Plasma, six tissues (brain, heart, lung, liver, kidney, and muscle), and urine were collected at multiple timepoints from 5 minutes to 48 hours post-dose. The concentrations of nicotine, cotinine, and trans-3′-hydroxycotinine (3-OH-cotinine) were determined, and the pharmacokinetic profiles were compared among the four doses for each route. The results indicated that after single nicotine dose, nicotine bioavailability was 53% via PO. Across all the administration routes and doses, nicotine was quickly distributed to all six tissues; kidney had the highest nicotine and cotinine levels, and the lung had the highest 3-OH-cotinine levels; nicotine was metabolized extensively to cotinine and cotinine was metabolized to a lesser extent to 3-OH-cotinine; the elimination of plasma nicotine, cotinine, and 3-OH-cotinine followed first-order kinetics; plasma nicotine had a shorter half-life than cotinine or 3-OH-cotinine; the half-lives of plasma nicotine, cotinine, and 3-OH-cotinine were dose- and route-independent; and nicotine and cotinine were major urinary excretions followed by 3-OH-cotinine. Nicotine, cotinine, and 3-OH-cotinine levels in plasma, tissues, and urine exhibited dose-dependent increases. These study findings improve our understanding of the pharmacokinetics of nicotine, cotinine, and 3-OH-cotinine across different routes of exposure.","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":"189 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142265752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kevin Castillo-Mendieta, Guillermin Agüero-Chapin, José R Mora, Noel Pérez, Ernesto Contreras-Torres, José R Valdes-Martini, Felix Martinez-Rios, Yovani Marrero-Ponce
{"title":"Unraveling the Hemolytic Toxicity Tapestry of Peptides using Chemical Space Complex Networks","authors":"Kevin Castillo-Mendieta, Guillermin Agüero-Chapin, José R Mora, Noel Pérez, Ernesto Contreras-Torres, José R Valdes-Martini, Felix Martinez-Rios, Yovani Marrero-Ponce","doi":"10.1093/toxsci/kfae115","DOIUrl":"https://doi.org/10.1093/toxsci/kfae115","url":null,"abstract":"Peptides have emerged as promising therapeutic agents. However, their potential is hindered by hemotoxicity. Understanding the hemotoxicity of peptides is crucial for developing safe and effective peptide-based therapeutics. Here, we employed chemical space complex networks (CSNs) to unravel the hemotoxicity tapestry of peptides. CSNs are powerful tools for visualizing and analyzing the relationships between peptides based on their physicochemical properties and structural features. We constructed CSNs from the StarPepDB database, encompassing 2004 hemolytic peptides, and explored the impact of seven different (dis)similarity measures on network topology and cluster (communities) distribution. Our findings revealed that each CSN extracts orthogonal information, enhancing the motif discovery and enrichment process. We identified 12 consensus hemolytic motifs, whose amino acid composition unveiled a high abundance of lysine, leucine, and valine residues, while aspartic acid, methionine, histidine, asparagine and glutamine were depleted. Additionally, physicochemical properties were used to characterize clusters/communities of hemolytic peptides. To predict hemolytic activity directly from peptide sequences, we constructed multi-query similarity searching models (MQSSMs), which outperformed cutting-edge machine learning (ML)-based models, demonstrating robust hemotoxicity prediction capabilities. Overall, this novel in silico approach uses complex network science as its central strategy to develop robust model classifiers, to characterize the chemical space and to discover new motifs from hemolytic peptides. This will help to enhance the design/selection of peptides with potential therapeutic activity and low toxicity.","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":"7 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring the Interplay Between Cannabinoids and Thymic Functions","authors":"Marvin Paulo Lins, Igor Santana De Melo","doi":"10.1093/toxsci/kfae114","DOIUrl":"https://doi.org/10.1093/toxsci/kfae114","url":null,"abstract":"Cannabinoids, derived from the Cannabis sativa plant, has garnered increasing attention for its potential therapeutic applications in various diseases. The pharmacologically active compounds in Cannabis, such as delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), exhibit diverse immunomodulatory properties. While studies have explored the effects of cannabinoids on immune function, their specific interactions with the thymus, a primary immune organ critical for T cell development and maturation, remain an intriguing area of investigation. As the thymus plays a fundamental role in shaping the immune repertoire, understanding the interplay between cannabinoids and thymic function may shed light on potential benefits or concerns associated with Cannabis-based therapies. This article aims to provide an overview of the current scientific knowledge regarding the impact of medicinal Cannabis on the thymus and its implications for disease treatment and immune health.","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":"15 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A computational framework to in silico screen for drug-induced hepatocellular toxicity.","authors":"Yueshan Zhao, Ji Youn Park, Da Yang, Min Zhang","doi":"10.1093/toxsci/kfae078","DOIUrl":"10.1093/toxsci/kfae078","url":null,"abstract":"<p><p>Drug-induced liver injury (DILI) is the most common trigger for acute liver failure and the leading cause of attrition in drug development. In this study, we developed an in silico framework to screen drug-induced hepatocellular toxicity (INSIGHT) by integrating the post-treatment transcriptomic data from both rodent models and primary human hepatocytes. We first built an early prediction model using logistic regression with elastic net regularization for 123 compounds and established the INSIGHT framework that can screen for drug-induced hepatotoxicity. The 235 signature genes identified by INSIGHT were involved in metabolism, bile acid synthesis, and stress response pathways. Applying the INSIGHT to an independent transcriptomic dataset treated by 185 compounds predicted that 27 compounds show a high DILI risk, including zoxazolamine and emetine. Further integration with cell image data revealed that predicted compounds with high DILI risk can induce abnormal morphological changes in the endoplasmic reticulum and mitochondrion. Clustering analysis of the treatment-induced transcriptomic changes delineated distinct DILI mechanisms induced by these compounds. Our study presents a computational framework for a mechanistic understanding of long-term liver injury and the prospective prediction of DILI risk.</p>","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":" ","pages":"14-25"},"PeriodicalIF":3.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11347774/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141432890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joseph H Lucas, Qixin Wang, Jiries Meehan-Atrash, Cortney Pang, Irfan Rahman
{"title":"Developmental PFOS exposure alters lung inflammation and barrier integrity in juvenile mice.","authors":"Joseph H Lucas, Qixin Wang, Jiries Meehan-Atrash, Cortney Pang, Irfan Rahman","doi":"10.1093/toxsci/kfae073","DOIUrl":"10.1093/toxsci/kfae073","url":null,"abstract":"<p><p>Emerging epidemiological evidence indicates perfluorooctane sulfonic acid (PFOS) is increasingly associated with asthma and respiratory viral infections. Animal studies suggest PFOS disrupts lung development and immuno-inflammatory responses, but little is known about the potential consequences on respiratory health and disease risk. Importantly, PFOS exposure during the critical stages of lung development may increase disease risk later in life. Thus, we hypothesized that developmental PFOS exposure will affect lung inflammation and alveolar/airway development in a sex-dependent manner. To address this knowledge gap, timed pregnant Balb/cJ dams were orally dosed with a PFOS (1.0 or 2.0 mg/kg/d) injected mealworm or a vehicle control daily from gestational day (GD) 0.5 to postnatal day (PND) 21, and offspring were sacrificed at PND 22-23. PFOS-exposed male offspring displayed increased alveolar septa thickness. Occludin was also downregulated in the lungs after PFOS exposure in mice, indicative of barrier dysfunction. BALF macrophages were significantly elevated at 2.0 mg/kg/d PFOS in both sexes compared with vehicles, whereas BALF cytokines (TNF-α, IL-6, KC, MIP-1α, MIP-1β, and MCP-1) were suppressed in PFOS-exposed male offspring compared with vehicle controls. Multiplex nucleic acid hybridization assay showed male-specific downregulation of cytokine gene expression in PFOS-exposed mice compared with vehicle mice. Overall, these results demonstrate PFOS exposure exhibits male-specific adverse effects on lung development and inflammation in juvenile offspring, possibly predisposing them to later-in-life respiratory disease. Further research is required to elucidate the mechanisms underlying the sex-differentiated pulmonary toxicity of PFOS.</p>","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":" ","pages":"48-60"},"PeriodicalIF":3.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11347778/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141237408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}