Yanan Zhao, Chuan Tian, Ping Wu, Feixiang Chen, Ao Xiao, Qifa Ye, Xiaowen Shi, Zijian Wang, Xinwei Han, Yun Chen
{"title":"Hydroxypropyl Chitosan/Soy Protein Isolate Conduits Promote Peripheral Nerve Regeneration.","authors":"Yanan Zhao, Chuan Tian, Ping Wu, Feixiang Chen, Ao Xiao, Qifa Ye, Xiaowen Shi, Zijian Wang, Xinwei Han, Yun Chen","doi":"10.1089/ten.TEA.2021.0068","DOIUrl":"https://doi.org/10.1089/ten.TEA.2021.0068","url":null,"abstract":"<p><p>Designing scaffolds, with optimized microstructure and function for promoting the release of neuro-related factors, is significant in peripheral nerve regeneration. Herein, a series of hydroxypropyl chitosan/soy protein isolate composite sponges (HCSS) were fabricated by a freeze-drying technique. The physicochemical properties of the resultant HCSS were examined by a Fourier infrared spectrometer, X-ray diffractometer, scanning electron microscope, water absorption assay, water retention assay, and compressive strength assay. The results indicated that HCSS exhibited an interconnected porous microstructure and a high water retention ratio with the increase in soy protein isolate (SPI) content. The biological characterization found that the HCSS-50 containing 50% SPI content profoundly promoted the proliferation of RSC96 cells and the secretion of neuro-related factors without excessive reactive oxygen species production. In addition, HCSS-50 could significantly promote the expression of neuro-related factors; for example, the expression of TGF-β was three times higher than that of the control group. Finally, an optimized HCSS-based conduit was fabricated from HCSS-50 to repair sciatic nerve injury in rats with the combination of bone marrow mesenchymal stem cells (BMSCs) or BMSC-derived Schwann cells (SCs). The results suggested that the constructed HCSS-based conduit accompanying BMSC-derived SCs could effectively promote axonal regeneration and upregulate the expression of neuro-related factors such as <i>Krox20</i>, <i>Zeb2</i>, and <i>GAP43</i>. Collectively, a newly engineered nerve conduit system was developed by incorporating HCSS-50 and BMSC-derived SCs, which could be an alternative candidate for peripheral nerve regeneration. Impact statement Peripheral nerve repair is of paramount significance in the clinical. This work describes a hydroxypropyl chitosan/soy protein isolate conduit, which could effectively promote axonal regeneration and upregulate the expression of neuro-related factors. Thus, we provide a potential candidate for peripheral nerve regeneration.</p>","PeriodicalId":23133,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"225-238"},"PeriodicalIF":4.1,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39299680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lewis S Gaffney, Zachary G Davis, Camilo Mora-Navarro, Matthew B Fisher, Donald O Freytes
{"title":"Extracellular Matrix Hydrogels Promote Expression of Muscle-Tendon Junction Proteins.","authors":"Lewis S Gaffney, Zachary G Davis, Camilo Mora-Navarro, Matthew B Fisher, Donald O Freytes","doi":"10.1089/ten.TEA.2021.0070","DOIUrl":"https://doi.org/10.1089/ten.TEA.2021.0070","url":null,"abstract":"<p><p>Muscle and tendon injuries are prevalent and range from minor sprains and strains to traumatic, debilitating injuries. However, the interactions between these tissues during injury and recovery remain unclear. Three-dimensional tissue models that incorporate both tissues and a physiologically relevant junction between muscle and tendon may help understand how the two tissues interact. Here, we use tissue specific extracellular matrix (ECM) derived from muscle and tendon to determine how cells of each tissue interact with the microenvironment of the opposite tissue, resulting in junction-specific features. The ECM materials were derived from the Achilles tendon and gastrocnemius muscle, decellularized, and processed to form tissue-specific pre-hydrogel digests. The ECM materials were unique in respect to protein composition and included many types of ECM proteins, not just collagens. After digestion and gelation, ECM hydrogels had similar complex viscosities that were less than type I collagen hydrogels at the same concentration. C2C12 myoblasts and tendon fibroblasts were cultured in tissue-specific ECM conditioned media or encapsulated in tissue-specific ECM hydrogels to determine cell-matrix interactions and the effects on a muscle-tendon junction marker, paxillin. The ECM conditioned media had only a minor effect on the upregulation of paxillin in cells cultured in monolayer. However, cells cultured within ECM hydrogels had 50-70% higher paxillin expression than cells cultured in type I collagen hydrogels. Contraction of the ECM hydrogels varied by the type of ECM used. Subsequent experiments with a varying density of type I collagen (and thus contraction) showed no correlation between paxillin expression and the amount of gel contraction, suggesting that a constituent of the ECM was the driver of paxillin expression in the ECM hydrogels. In addition, another junction marker, type XXII collagen, had similar expression patterns as paxillin, with smaller effect sizes. Using tissue-specific ECM allowed for the de-construction of the cell-matrix interactions similar to muscle-tendon junctions to study the expression of myotendinous junction-specific proteins. Impact statement The muscle-tendon junction is an important feature of muscle-tendon units; however, despite crosstalk between the two tissue types, the junction is often overlooked in current research. Deconstructing the cell-matrix interactions will provide the opportunity to study significant junction-specific features and markers that should be included in tissue models of the muscle-tendon unit, while gaining a deeper understanding of the natural junction. This research aims at informing future methods to engineer a more relevant multi-tissue platform to study the muscle-tendon unit.</p>","PeriodicalId":23133,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"270-282"},"PeriodicalIF":4.1,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39297325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ernst B Hunziker, Nahoko Shintani, Miroslav Haspl, Kurt Lippuner, Esther Vögelin, Marius J B Keel
{"title":"The Synovium of Human Osteoarthritic Joints Retains Its Chondrogenic Potential Irrespective of Age.","authors":"Ernst B Hunziker, Nahoko Shintani, Miroslav Haspl, Kurt Lippuner, Esther Vögelin, Marius J B Keel","doi":"10.1089/ten.TEA.2021.0105","DOIUrl":"https://doi.org/10.1089/ten.TEA.2021.0105","url":null,"abstract":"<p><p>The autologous synovium is a potential tissue source for local induction of chondrogenesis by tissue engineering approaches to repair articular cartilage defects that occur in osteoarthritis. It was the aim of the present study to ascertain whether the aging of human osteoarthritic patients compromises the chondrogenic potential of their knee-joint synovium and the structural and metabolic stability of the transformed tissue. The patients were allocated to one of the following two age categories: 54-65 years and 66-86 years (<i>n</i> = 7-11 donors per time point and experimental group; total number of donors: 64). Synovial biopsies were induced <i>in vitro</i> to undergo chondrogenesis by exposure to bone morphogenetic protein-2 (BMP-2) alone, transforming growth factor-β1 (TGF-β1) alone, or a combination of the two growth factors, for up to 6 weeks. The differentiated explants were evaluated morphologically and morphometrically for the volume fraction of metachromasia (sulfated proteoglycans), immunohistochemically for type-II collagen, and for the gene expression levels of anabolic chondrogenic markers as well as catabolic factors by a real-time polymerase chain reaction analysis. Quantitative metachromasia revealed that chondrogenic differentiation of human synovial explants was induced to the greatest degree by either BMP-2 alone or the BMP-2/TGF-β1 combination, that is, to a comparable level with each of the two stimulation protocols and within both age categories. The BMP-2/TGF-β1combination protocol resulted in chondrocytes of a physiological size for normal human articular cartilage, unlike the BMP-2-alone stimulation that resulted in cell sizes of terminal hypertrophy. The stable gene expression levels of the anabolic chondrogenic markers confirmed the superiority of these two stimulation protocols and demonstrated the hyaline-like qualities of the generated cartilage matrix. The gene expression levels of the catabolic markers remained extremely low. The data also confirmed the usefulness of experimental <i>in vitro</i> studies with bovine synovial tissue as a paradigm for human synovial investigations. Our data reveal the chondrogenic potential of the human knee-joint synovium of osteoarthritic patients to be uncompromised by aging and catabolic processes. The potential of synovium-based clinical engineering (repair) of cartilage tissue using autologous synovium may thus not be reduced by the age of the human patient. Impact statement Our data reveal that in younger and older age groups alike, synovial explants from osteoarthritic joints can be equally well induced to undergo chondrogenesis <i>in vitro</i>; that is, the chondrogenic potential of the human synovium is not compromised by aging. These findings imply that the autologous synovium represents an adequate tissue source for the repair of articular cartilage in clinical practice by tissue engineering approaches in human patients suffering from osteoarthritis, independent of","PeriodicalId":23133,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"283-295"},"PeriodicalIF":4.1,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39557402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modeling viral infection with tissue engineering: COVID-19 and the next outbreaks","authors":"A. Tatara","doi":"10.1016/B978-0-12-824064-9.00015-0","DOIUrl":"https://doi.org/10.1016/B978-0-12-824064-9.00015-0","url":null,"abstract":"","PeriodicalId":23133,"journal":{"name":"Tissue Engineering Part A","volume":"1 1","pages":"647 - 667"},"PeriodicalIF":0.0,"publicationDate":"2022-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42521797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Future of nanotechnology in tissue engineering","authors":"V. Vijayan, Gerardo Hernandez-Moreno, V. Thomas","doi":"10.1016/b978-0-12-824064-9.00003-4","DOIUrl":"https://doi.org/10.1016/b978-0-12-824064-9.00003-4","url":null,"abstract":"","PeriodicalId":23133,"journal":{"name":"Tissue Engineering Part A","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"53910022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. J. de Souza Araújo, E. Münchow, S. Tootla, M. Bottino
{"title":"Dental pulp tissue regeneration","authors":"I. J. de Souza Araújo, E. Münchow, S. Tootla, M. Bottino","doi":"10.1016/b978-0-12-824064-9.00005-8","DOIUrl":"https://doi.org/10.1016/b978-0-12-824064-9.00005-8","url":null,"abstract":"","PeriodicalId":23133,"journal":{"name":"Tissue Engineering Part A","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"53910034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andri K Riau, Kenny P Y Boey, Nur Zahirah Binte M Yusoff, Tze-Wei Goh, Gary H F Yam, Kin F Tang, Catherine S H Phua, Hui-Jun Chen, Yoke F Chiew, Yu-Chi Liu, Jodhbir S Mehta
{"title":"Experiment-Based Validation of Corneal Lenticule Banking in a Health Authority-Licensed Facility.","authors":"Andri K Riau, Kenny P Y Boey, Nur Zahirah Binte M Yusoff, Tze-Wei Goh, Gary H F Yam, Kin F Tang, Catherine S H Phua, Hui-Jun Chen, Yoke F Chiew, Yu-Chi Liu, Jodhbir S Mehta","doi":"10.1089/ten.TEA.2021.0042","DOIUrl":"https://doi.org/10.1089/ten.TEA.2021.0042","url":null,"abstract":"<p><p>With the expected rise in patients undergoing refractive lenticule extraction worldwide, the number of discarded corneal stromal lenticules will increase. Therefore, establishing a lenticule bank to collect, catalog, process, cryopreserve, and distribute the lenticules (for future therapeutic needs) could be advantageous. In this study, we validated the safety of lenticule banking that involved the collection of human lenticules from our eye clinic, transportation of the lenticules to a Singapore Ministry of Health-licensed lenticule bank, processing, and cryopreservation of the lenticules, which, after 3 months or, a longer term, 12 months, were retrieved and transported to our laboratory for implantation in rabbit corneas. The lenticule collection was approved by the SingHealth Centralised Institutional Review Board (CIRB). Both short-term and long-term cryopreserved lenticules, although not as transparent as fresh lenticules due to an altered collagen fibrillar packing, did not show any sign of rejection and cytotoxicity, and did not induce haze or neovascularization for 16 weeks even when antibiotic and steroidal administration were withdrawn after 8 weeks. The lenticular transparency progressively improved and was mostly clear after 4 weeks, the same period when we observed the stabilization of corneal hydration. We showed that the equalization of the collagen fibrillar packing of the lenticules with that of the host corneal stroma contributed to the lenticular haze clearance. Most importantly, no active wound healing and inflammatory reactions were seen after 16 weeks. Our study suggests that long-term lenticule banking is a feasible approach for the storage of stromal lenticules after refractive surgery. Impact statement Since 2011, close to 3 million refractive lenticule extraction procedures have been performed. The majority of the extracted lenticules are discarded. The lenticules could have been cryopreserved and retrieved at a later date for therapeutic or refractive applications. Therefore, establishing a lenticule bank to collect, catalog, process, cryopreserve, and distribute the lenticules could be advantageous. In this study, we simulated a lenticule banking service in a validated health authority-licensed facility and showed that long-term cryopreservation of the lenticules in the facility was safe and feasible <i>in vivo</i>.</p>","PeriodicalId":23133,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"69-83"},"PeriodicalIF":4.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39237527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Oro-dental regeneration","authors":"M. Jose, S. Arya, Finosh G. Thankam","doi":"10.1016/b978-0-12-824064-9.00010-1","DOIUrl":"https://doi.org/10.1016/b978-0-12-824064-9.00010-1","url":null,"abstract":"","PeriodicalId":23133,"journal":{"name":"Tissue Engineering Part A","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"53909746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}