{"title":"Predicting Particle Separation and Sieve Blinding During Wheat Flour Sifting","authors":"K. Siliveru, R. Ambrose","doi":"10.13031/trans.14276","DOIUrl":"https://doi.org/10.13031/trans.14276","url":null,"abstract":"HighlightsWheat flour cohesion was modeled using the Johnson-Kendall-Roberts (JKR) contact model.The size-based separation was highly influenced by particle size, particle roughness, cohesion, and sieve opening size.Sieve blinding happened at 15.25 and 10.32 s of sieving for hard red winter (HRW) and soft red winter (SRW) wheat flour particles, respectively.Abstract. Sifting or size-based separation of flour particles is an important operation in the wheat milling process. During the separation process, the flour particles often behave as imperfect solids with discontinuous flow and tend to form agglomerates due to interparticle cohesion. Interparticle cohesion in flours is highly dependent on the particle physical and chemical parameters and influences the sieving process. This study presents the development of a discrete element method (DEM) model to predict the size-based separation of wheat flours at 10% and 14% moisture contents (wet basis). DEM models of the size-based separation process were developed using the Hertz-Mindlin contact model. To account for the interparticle cohesion, the Johnson-Kendall-Roberts (JKR) model was coupled with the contact model. The size-based separation of hard red winter (HRW) and soft red winter (SRW) wheat flours was simulated and then validated using lab-scale experiments. Both the modeling and experimental approaches indicated that the percent particle separation was higher in the sieves with larger openings. Particle size, roughness, and cohesion affected the size-based separation in sieves with smaller openings. The model simulation results for the percent mass retained on the screens and the sieve blinding time were comparable with the experimental results. The standard error of prediction (SEP) ranged from 0.13 to 8.27, which indicates that this approach will be useful to predict the size-based separation of cohesive fine particles. The developed model will also be useful to estimate the sieve blinding time during sifting processes. Keywords: Cohesion, Johnson-Kendall-Roberts model, Sifting, Wheat milling.","PeriodicalId":23120,"journal":{"name":"Transactions of the ASABE","volume":"7 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84314788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Case Study of Transportation Benefits Using GIS in Distributed Preprocessing of Corn Stover into Crude Biobutanol","authors":"Joshua J. Jackson, M. Montross","doi":"10.13031/TRANS.13896","DOIUrl":"https://doi.org/10.13031/TRANS.13896","url":null,"abstract":"HighlightsTotal transportation costs were reduced by 32% to 63% with distributed biobutanol depots.An 8 km distance to the depot manifested the most desirable transportation costs.Across regions, biomass transport costs from field to depot were similar at equivalent distances.Abstract. The transportation efficiencies of centralized biomass processing facilities were compared to a proposed distributed preprocessing network with centralized refining facilities. Centralized biomass processing was defined as transport of baled corn stover directly from the field to the refinery. Distributed preprocessing with centralized refining was defined as transport of baled corn stover from the field to a biobutanol preprocessing depot and transport of completely dewatered crude biobutanol solution from the depot to a centralized refinery. For both systems, the locations of the corn fields, as identified through the cropland data layer, and of the refinery were fixed. For the distributed system, the biobutanol depot locations were variable and depended on different maximum transport distances (8 to 80 km) from the field to the depot. In this case study, site-specific transportation costs and biobutanol production capacities were developed for different agricultural regions in Kentucky. The distributed system produced a 32% to 63% reduction in total transportation cost with decreased (50% to 90%) fuel use as compared to the centralized system. The GIS transportation model demonstrated that on-farm biofuel production could be an effective means of producing biofuel and reducing transportation costs. Keywords: Biomass transport, Depot, Distributed biomass collection, GIS location-allocation, Minimize facilities, Satellite facilities.","PeriodicalId":23120,"journal":{"name":"Transactions of the ASABE","volume":"13 1","pages":"161-175"},"PeriodicalIF":1.5,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86811252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Visual Servo Control Method for Tomato Cluster-Picking Manipulators Based on a T-S Fuzzy Neural Network","authors":"Liang Xifeng, Ming Peng, Lu Jie, Qin Chao","doi":"10.13031/TRANS.13485","DOIUrl":"https://doi.org/10.13031/TRANS.13485","url":null,"abstract":"HighlightsA T-S fuzzy neural network was applied to the visual servo control system of a tomato picking manipulator.The T-S fuzzy neural network structure was designed, and collected data were used to train the neural network model.A visual servo control system for the picking manipulator based on the neural network was designed and tested.The T-S fuzzy neural network was superior to a BP neural network in visual servo control of the picking manipulator.Abstract. To reduce the computational load of image Jacobian matrix estimation and to avoid the appearance of singularity of a Jacobian matrix in the visual servo control of a picking manipulator, a T-S fuzzy neural network algorithm is proposed to replace the image Jacobian matrix. This better fits the hand-eye relationship by combining the knowledge structure of fuzzy reasoning with the self-learning ability of a neural network. The T-S fuzzy neural network was trained and tested by collecting the variation data of image features and joint angles; after training, the T-S fuzzy neural network was used to predict the joint angles of the picking manipulator. Simulation results show that the square sum of training errors and testing errors were 0.017 and 0.032, respectively, after training the T-S fuzzy neural network. A T-S fuzzy neural network controller was applied to the visual servo system of the picking robot, and the test results show that the average difference between the end-effector and the ultimate target location of the visual servo system based on the T-S fuzzy neural network controller was 0.0037 m, which was 79.44% less than that of the visual servo system based on a BP neural network. The final average error of image features was between 0.52 and 3.25 pixels, which was 74.932% less than that of the visual servo system based on the BP neural network. Keywords: Picking manipulator, Tomato clusters, T-S fuzzy neural network, Visual servoing.","PeriodicalId":23120,"journal":{"name":"Transactions of the ASABE","volume":"34 1","pages":"529-543"},"PeriodicalIF":1.5,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80749172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Canan Sevimli, Y. Gezgin, A. Oz, Shaymaa Al Sharqi, Z. P. Gumus, N. Dunford
{"title":"Biological Activity of the Extracts from Pecan Shelling Industry Byproducts","authors":"Canan Sevimli, Y. Gezgin, A. Oz, Shaymaa Al Sharqi, Z. P. Gumus, N. Dunford","doi":"10.13031/TRANS.14439","DOIUrl":"https://doi.org/10.13031/TRANS.14439","url":null,"abstract":"Highlights First study on characterization of the extracts obtained from industrial pecan nut processing byproducts. Chemical composition and biological activity of the extracts varied with the pecan cultivars used in the process. Pecan shell extracts exhibited anticancer, antioxidant and antimicrobial activity. Abstract Industrial processing of pecan nuts produces large amounts of shells. They have economic significance to pecan growers and processors. Hence, it is imperative that valorization of the pecan processing byproducts are explored. In this study, byproducts from commercial pecan nut shelling operations were evaluated as potential sources of biologically active phytochemicals. Shelling byproducts from Pawnee, Native and Stuart cultivars were examined. Aqueous ethanol shell extracts were analyzed for their chemical composition using the QTOF-MS technique. Total phenolic content, DPPH Radical Scavenging Capacity, anticancer and antimicrobial activity of the samples were investigated. Chemical composition and biological activity of the shell extracts varied significantly with the pecan cultivar and type of the byproduct stream used in the study. Presence of nut meat pieces in the byproducts resulted in high oil content in the extracts. The extract from Pawnee cultivar showed high DDPH activity, low IC50 for the cancer cell lines and high IC50 for the healthy cell line Vero. Extracts from all the cultivars had antimicrobial activity against Escherichia coli at relatively high disk loadings. This is the first report on the biological activity of extracts obtained from commercial pecan shelling operation byproducts. The findings of this study have significant practical implications and provide the initial data much needed for valorization of industrial byproducts.","PeriodicalId":23120,"journal":{"name":"Transactions of the ASABE","volume":"34 1","pages":"0"},"PeriodicalIF":1.5,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78931147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Perspective: Preferential Flow in Riparian Buffers: Current Research and Future Needs","authors":"D. Heeren, Lucie Guertault, K. Mankin","doi":"10.13031/trans.14732","DOIUrl":"https://doi.org/10.13031/trans.14732","url":null,"abstract":"HighlightsPreferential flow (PF) can critically reduce riparian buffer contaminant removal efficiency.This collection presents research on PF measurement, visualization, modeling, and contaminant transport impacts.Future needs include tools to identify landscape-scale PF areas and conservation practices.Future models for research and practice should account for PF in riparian buffers.Abstract. Preferential flow in riparian buffers can substantially compromise their effectiveness in reducing contaminants from overland runoff. The objective of this article is to introduce a collection of five articles on current research into subsurface preferential flow measurement, visualization, modeling, and impacts on contaminant fate and transport at scales ranging from the subsurface pore scale to the plot scale to the watershed scale. This collection presents selected works from a broader invited session on “Preferential flow and piping in riparian buffers” at the 2020 ASABE Annual International Meeting. Major findings include: new methodologies, such as light transmission and geophysics, to characterize subsurface preferential flow; an infiltration partitioning approach to quantify preferential flow from field experiments; a kinematic dispersive wave model to effectively simulate subsurface preferential flow; and the significant impact of surface concentrated flow pathways on pesticide fate and transport both upstream and within a riparian buffer. Future work is needed to develop methods and tools to identify PF areas and management solutions within a landscape, and to update both research and design models to better quantify and account for PF processes. Keywords: Best management practice, Buffer strip, Agricultural conservation practice, Filter strip, Macropore, Nonpoint-source pollution.","PeriodicalId":23120,"journal":{"name":"Transactions of the ASABE","volume":"85 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78149862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Techno-Economic Analysis of Constant-Flow Woodchip Bioreactors","authors":"Lindsey M. Hartfiel, M. Soupir, K. Rosentrater","doi":"10.13031/TRANS.14300","DOIUrl":"https://doi.org/10.13031/TRANS.14300","url":null,"abstract":"HighlightsTechno-economic analysis was performed for multiple scales of bioreactors operated under a variety of conditions.The unit cost decreased as the bioreactor size increased.The unit cost increased in bioreactors with longer HRTs and bypass flow due to reduced treatment capacity.One large bioreactor was more cost-effective than multiple smaller bioreactors.Abstract. Woodchip denitrification bioreactors are a relatively new, edge-of-field technology used to reduce nitrate-nitrogen (NO3-N) from subsurface tile drainage. The removal rate of nitrate is influenced by many factors, including temperature, dissolved oxygen, and hydraulic residence time (HRT). The objective of this study was to conduct a techno-economic analysis (TEA) for four scales of woodchip denitrification bioreactors operating at three HRTs (2, 8, and 16 h), designed with bypass flow or with a low probability of bypass flow, to determine the cost to remove 1 kg of NO3-N at each bioreactor scale and at each HRT. Several assumptions were made: the flow rate required to achieve a 2 h HRT on a per m3 basis could be achieved at all scales, the same mass removal of NO3-N was achieved on a per cubic meter basis, and the 2 h HRT did not have any bypass flow at each scale. With these assumptions, the lowest unit cost was observed for the large-scale bioreactor sized to have a low probability of bypass flow at 16 h HRT, with a resulting cost of $0.74 kg-1 NO3-N removed. The highest unit cost was observed for the pilot-scale bioreactor designed with bypass flow to achieve a 16 h HRT at a cost of $60.13 kg-1 NO3-N removed. At longer HRTs with bypass flow, a greater percent removal of nitrate has been observed with a lower mass removal rate. By having a low probability of bypass flow in the design, a higher mass removal and percent removal of nitrate were observed, leading to the above results. Contrasting this trend, the total and annual costs were highest for the large-scale bioreactor and lowest for the pilot-scale bioreactor. However, it was determined that 783%, 280%, and 54% increases in total cost for the pilot-, small-, and medium-scale bioreactors would be incurred to implement the number of bioreactors (66, 24, and 4, respectively) required to treat the same volume of flow as one large bioreactor. These results can be used to inform future design decisions and inform stakeholders of the approximate unit cost of installing a denitrifying woodchip bioreactor over a range of expected field conditions. While a larger bioreactor with a low probability of bypass flow may represent a more cost-effective investment, the potential for unintended, negative byproducts needs to be considered in the design. Keywords: Denitrification, Nitrate, Tile drainage, Water quality, Woodchip bioreactor.","PeriodicalId":23120,"journal":{"name":"Transactions of the ASABE","volume":"25 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81079831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Valentina Prado, J. Daystar, Steven Pires, M. Wallace, L. Laurin
{"title":"Comparative Life Cycle Assessment of Edible Vegetable Frying Oils","authors":"Valentina Prado, J. Daystar, Steven Pires, M. Wallace, L. Laurin","doi":"10.13031/trans.14515","DOIUrl":"https://doi.org/10.13031/trans.14515","url":null,"abstract":"HighlightsCottonseed oil (CSO), a cotton byproduct, has advantages for climate change compared to other seed oils.Results show that the cultivation phase is the main impact driver for all vegetable oils analyzed in this study.Refined CSO (U.S.) can reduce climate change impacts by up to 83% as compared to the other oils analyzed.Abstract. Edible vegetable oils are a major source of climate change impacts and an environmental concern in the processed food industry. This study consists of a cradle-to-grave life cycle assessment (LCA) of refined U.S. cottonseed oil (CSO), global soybean oil, U.S. canola oil, and palm oil sourced from Indonesia and Malaysia. Considering the oils equivalent for deep frying, they are compared on a 1 kg of oil basis. Analysis includes sensitivity analyses for modeling allocation choices and oil mixes as well as uncertainty analysis. Results show that the cultivation phase is the main impact driver for all vegetable oils analyzed, which favors CSO (U.S.) because it is a co-product. Refined CSO (U.S.) can reduce climate change impacts by up to 83%. Overall, refined CSO (U.S.) was a top performer in six of the eight impact categories evaluated. When ranking the oils, refined CSO (U.S.) was the preferred choice. Despite being the preferred choice, there are tradeoffs with CSO, such as water scarcity. In the context of global-scale commercial frying applications, e.g., McDonald’s daily French fry production of 9 million tons per day, switching the frying oil to refined CSO (U.S.) represents potential savings of 1,130 to 2,188 tons of CO2-eq d-1. For fast-food chains seeking to reduce their climate change impacts, refined CSO (U.S.) may be useful in frying applications. However, opportunities may exist for improvement in water use efficiency in the cultivation phase, which reinforces the need for continuous improvements in agriculture. Keywords: Comparative life cycle assessment, Canola oil, Cottonseed oil, Cotton sustainability, Fast-food industry, LCA, Palm oil, Soybean oil, Vegetable frying oils.","PeriodicalId":23120,"journal":{"name":"Transactions of the ASABE","volume":"46 5 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87686608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dielectric Properties of Switchgrass and Corn Stover in the Radio Frequency Range","authors":"A. M. Souza, S. Birrell, B. Steward","doi":"10.13031/TRANS.13940","DOIUrl":"https://doi.org/10.13031/TRANS.13940","url":null,"abstract":"The dielectric properties of biological materials are relevant when developing moisture content sensors. However, little is known about the permittivities of switchgrass and corn stover in a wider frequency range. The goal of this research was to determine their dielectric constants and loss factors at different moisture contents across a frequency range of 5 Hz to 13 MHz and with the material static and in motion inside a sample container. The permittivity of these materials was calculated by measuring their admittance in a test fixture using an impedance analyzer at three different moisture levels (9.0% to 30.5%). Overall, the materials‘ dielectric properties increased with moisture but decreased with frequency. Prediction models were developed using the data in a frequency range of 10 kHz to 5 MHz. Model coefficients of determination were higher than 0.90 in general, except for the model measuring the loss factor of switchgrass in motion. Additionally, the dielectric constant was not different with the materials static or in motion, but the loss factor values were distinct. This work can be used for the development of electrical moisture content sensors for switchgrass and corn stover.","PeriodicalId":23120,"journal":{"name":"Transactions of the ASABE","volume":"17 1","pages":"243-252"},"PeriodicalIF":1.5,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87910983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Manal H. Askar, M. Youssef, D. Hesterberg, K. King, A. Amoozegar, R. Skaggs, G. Chescheir, E. Ghane
{"title":"DRAINMOD-P: A Model for Simulating Phosphorus Dynamics and Transport in Drained Agricultural Lands: II. Model Testing","authors":"Manal H. Askar, M. Youssef, D. Hesterberg, K. King, A. Amoozegar, R. Skaggs, G. Chescheir, E. Ghane","doi":"10.13031/trans.14510","DOIUrl":"https://doi.org/10.13031/trans.14510","url":null,"abstract":"HighlightsDRAINMOD-P was tested using a dataset from a drained field with desiccation cracks.Surface and subsurface phosphorus losses were mainly in the particulate form.Surface runoff was a major pathway for phosphorus loss in this field.The model performance in predicting edge-of-field phosphorus loss is promising.Abstract. The recently developed phosphorus (P) model DRAINMOD-P was tested using a four-year dataset from a subsurface-drained field in northwest Ohio with significant potential for desiccation cracking or preferential flow. The model satisfactorily predicted subsurface drainage discharge, with a monthly Nash-Sutcliffe efficiency (NSE) of 0.59 and index of agreement (IOA) of 0.89. Lack of annual water budget closure was reported and was likely caused by uncertainty in measured surface runoff and/or modeling approaches representing macropore flow. More than 80% of predicted surface and subsurface P losses were in the particulate form. Surface runoff was the major pathway for P loss, contributing 78% of predicted total P (TP) load. On average, predicted macropore flow represented about 15% of drainage discharge and contributed 21% of DRP loss via subsurface drains. The performance of DRAINMOD-P in predicting monthly dissolved reactive P and TP losses through subsurface drains can be rated as poor (NSE = 0.33 and IOA = 0.60) and very good (NSE = 0.81 and IOA = 0.95), respectively. DRAINMOD-P demonstrated potential for simulating P fate and transport in drained cropland. More testing is needed to further examine newly incorporated hydrological and biogeochemical components of the model. Keywords: Agricultural drainage, Edge-of-field phosphorus load, Macropore flow, Phosphorus model, Sediment yield, Water quality modeling.","PeriodicalId":23120,"journal":{"name":"Transactions of the ASABE","volume":"57 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87919951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Li Yang, Lizhang Xu, Gao Zhipeng, En Lu, Yaoming Li
{"title":"Effect of Vibration on Rapeseed Header Loss and Optimization of Header Frame","authors":"Li Yang, Lizhang Xu, Gao Zhipeng, En Lu, Yaoming Li","doi":"10.13031/trans.13299","DOIUrl":"https://doi.org/10.13031/trans.13299","url":null,"abstract":"HighlightsThe relationship of vibration and header loss was studied by multi-point vibration measurement and loss collection test.There was an approximately linear positive correlation between total header vibration and total rapeseed header loss.The header frame was analyzed and optimized through modal simulation and testing.The total rapeseed header loss of the improved header was reduced by 33.2% to 46.9%.Abstract. In view of the current large rapeseed header losses of rape combine harvesters, the effects of the header on rapeseed header loss were studied from the perspective of vibration. First, the vibrations at various measuring points on the header during rape harvest were studied using a data acquisition and analysis system while performing collection tests of rapeseed header loss with the sample slot method. The relationships between total header vibration and total rapeseed header loss and between vertical cutter vibration and rapeseed vertical cutter loss were shown to have a positive correlation, and they all increased with the increase in engine speed. Vertical cutter loss accounted for 31.2% to 42.4% of the total rapeseed header loss. Modal analysis and optimization of the header frame were then performed by simulation and test. The natural frequencies of the first-order and second-order modes of the optimized header were increased, and the possibility of resonance with other working parts was eliminated. Finally, the improved header was tested during rape harvest. The results showed that the total vibration of the improved header was reduced by 19.9% to 43.9%, and the total rapeseed header loss was reduced by 33.2% to 46.9%. The vertical cutter vibration was reduced by 30.5% to 49.8%, and the rapeseed vertical cutter loss was reduced by 20.8% to 34.7%. In addition, the vibration and rapeseed loss of the improved header had relatively slow rates of increase with the increase in engine speed. The method of reducing rapeseed loss by reducing the header vibration achieved an obvious and positive effect. Keywords: Frame optimization, Modal analysis, Rape combine harvester, Rapeseed header loss, Vibration.","PeriodicalId":23120,"journal":{"name":"Transactions of the ASABE","volume":"30 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90226325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}