{"title":"柳枝稷和玉米秸秆在射频范围内的介电特性","authors":"A. M. Souza, S. Birrell, B. Steward","doi":"10.13031/TRANS.13940","DOIUrl":null,"url":null,"abstract":"The dielectric properties of biological materials are relevant when developing moisture content sensors. However, little is known about the permittivities of switchgrass and corn stover in a wider frequency range. The goal of this research was to determine their dielectric constants and loss factors at different moisture contents across a frequency range of 5 Hz to 13 MHz and with the material static and in motion inside a sample container. The permittivity of these materials was calculated by measuring their admittance in a test fixture using an impedance analyzer at three different moisture levels (9.0% to 30.5%). Overall, the materials‘ dielectric properties increased with moisture but decreased with frequency. Prediction models were developed using the data in a frequency range of 10 kHz to 5 MHz. Model coefficients of determination were higher than 0.90 in general, except for the model measuring the loss factor of switchgrass in motion. Additionally, the dielectric constant was not different with the materials static or in motion, but the loss factor values were distinct. This work can be used for the development of electrical moisture content sensors for switchgrass and corn stover.","PeriodicalId":23120,"journal":{"name":"Transactions of the ASABE","volume":"17 1","pages":"243-252"},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dielectric Properties of Switchgrass and Corn Stover in the Radio Frequency Range\",\"authors\":\"A. M. Souza, S. Birrell, B. Steward\",\"doi\":\"10.13031/TRANS.13940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dielectric properties of biological materials are relevant when developing moisture content sensors. However, little is known about the permittivities of switchgrass and corn stover in a wider frequency range. The goal of this research was to determine their dielectric constants and loss factors at different moisture contents across a frequency range of 5 Hz to 13 MHz and with the material static and in motion inside a sample container. The permittivity of these materials was calculated by measuring their admittance in a test fixture using an impedance analyzer at three different moisture levels (9.0% to 30.5%). Overall, the materials‘ dielectric properties increased with moisture but decreased with frequency. Prediction models were developed using the data in a frequency range of 10 kHz to 5 MHz. Model coefficients of determination were higher than 0.90 in general, except for the model measuring the loss factor of switchgrass in motion. Additionally, the dielectric constant was not different with the materials static or in motion, but the loss factor values were distinct. This work can be used for the development of electrical moisture content sensors for switchgrass and corn stover.\",\"PeriodicalId\":23120,\"journal\":{\"name\":\"Transactions of the ASABE\",\"volume\":\"17 1\",\"pages\":\"243-252\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the ASABE\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.13031/TRANS.13940\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the ASABE","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.13031/TRANS.13940","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Dielectric Properties of Switchgrass and Corn Stover in the Radio Frequency Range
The dielectric properties of biological materials are relevant when developing moisture content sensors. However, little is known about the permittivities of switchgrass and corn stover in a wider frequency range. The goal of this research was to determine their dielectric constants and loss factors at different moisture contents across a frequency range of 5 Hz to 13 MHz and with the material static and in motion inside a sample container. The permittivity of these materials was calculated by measuring their admittance in a test fixture using an impedance analyzer at three different moisture levels (9.0% to 30.5%). Overall, the materials‘ dielectric properties increased with moisture but decreased with frequency. Prediction models were developed using the data in a frequency range of 10 kHz to 5 MHz. Model coefficients of determination were higher than 0.90 in general, except for the model measuring the loss factor of switchgrass in motion. Additionally, the dielectric constant was not different with the materials static or in motion, but the loss factor values were distinct. This work can be used for the development of electrical moisture content sensors for switchgrass and corn stover.
期刊介绍:
This peer-reviewed journal publishes research that advances the engineering of agricultural, food, and biological systems. Submissions must include original data, analysis or design, or synthesis of existing information; research information for the improvement of education, design, construction, or manufacturing practice; or significant and convincing evidence that confirms and strengthens the findings of others or that revises ideas or challenges accepted theory.