{"title":"Small Vertex Cover Helps in Fixed-Parameter Tractability of Graph Deletion Problems over Data Streams","authors":"Arijit Bishnu, Arijit Ghosh, Sudeshna Kolay, Gopinath Mishra, Saket Saurabh","doi":"10.1007/s00224-023-10136-w","DOIUrl":"https://doi.org/10.1007/s00224-023-10136-w","url":null,"abstract":"Abstract In the study of parameterized streaming complexity on graph problems, the main goal is to design streaming algorithms for parameterized problems such that $$mathcal {O}(f(k) log ^{mathcal {O}(1)} n)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:msup> <mml:mo>log</mml:mo> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> space is enough, where f is an arbitrary computable function depending only on the parameter k . However, in the past few years very few positive results have been established. Most of the graph problems that do have streaming algorithms of the above nature are ones where localized checking is required, like Vertex Cover or Maximum Matching parameterized by the size k of the solution we are seeking. Chitnis et al. (SODA’16) have shown that many important parameterized problems that form the backbone of traditional parameterized complexity are known to require $$Omega (n)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>Ω</mml:mi> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> bits of storage for any streaming algorithm; e.g. Feedback Vertex Set , Even Cycle Transversal , Odd Cycle Transversal , Triangle Deletion or the more general $$mathcal{F}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>F</mml:mi> </mml:math> - Subgraph Deletion when parameterized by solution size k . Our contribution lies in overcoming the obstacles to efficient parameterized streaming algorithms in graph deletion problems by utilizing the power of parameterization. We focus on the vertex cover size K as the parameter for the parameterized graph deletion problems we consider. In this work, we consider the four most well-studied streaming models: the Ea , Dea , Va (vertex arrival) and Al (adjacency list) models. Surprisingly, the consideration of vertex cover size K in the different models leads to a classification of positive and negative results for problems like $$mathcal{F}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>F</mml:mi> </mml:math> - Subgraph Deletion and $$mathcal{F}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>F</mml:mi> </mml:math> - Minor Deletion .","PeriodicalId":22832,"journal":{"name":"Theory of Computing Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136308259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Well-Covered Graphs With Constraints On $$Delta $$ And $$delta $$","authors":"Vadim E. Levit, David Tankus","doi":"10.1007/s00224-023-10140-0","DOIUrl":"https://doi.org/10.1007/s00224-023-10140-0","url":null,"abstract":"","PeriodicalId":22832,"journal":{"name":"Theory of Computing Systems","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46652296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dariusz R. Kowalski, Miguel A. Mosteiro, Kevin Zaki
{"title":"Correction to: Dynamic Multiple-Message Broadcast: Bounding Throughput in the Affectance Model","authors":"Dariusz R. Kowalski, Miguel A. Mosteiro, Kevin Zaki","doi":"10.1007/s00224-023-10143-x","DOIUrl":"https://doi.org/10.1007/s00224-023-10143-x","url":null,"abstract":"","PeriodicalId":22832,"journal":{"name":"Theory of Computing Systems","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42833829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Space Complexity of Sum Labelling","authors":"Henning Fernau, Kshitij Gajjar","doi":"10.1007/s00224-023-10130-2","DOIUrl":"https://doi.org/10.1007/s00224-023-10130-2","url":null,"abstract":"Abstract A graph is called a sum graph if its vertices can be labelled by distinct positive integers such that there is an edge between two vertices if and only if the sum of their labels is the label of another vertex of the graph. Most papers on sum graphs consider combinatorial questions like the minimum number of isolated vertices that need to be added to a given graph to make it a sum graph. In this paper, we initiate the study of sum graphs from the viewpoint of computational complexity. Notice that every n -vertex sum graph can be represented by a sorted list of n positive integers where edge queries can be answered in $$mathscr {O}(log n)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mo>log</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> time. Therefore, upper-bounding the numbers used as vertex labels also upper-bounds the space complexity of storing the graph in the database. We show that every n -vertex, m -edge, d -degenerate graph can be made a sum graph by adding at most m isolated vertices to it, such that the largest numbers used as vertex labels grows as $$mathscr {O}(n^2d)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>n</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mi>d</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> . This enables us to store the graph using $$mathscr {O}(mlog n)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mi>m</mml:mi> <mml:mo>log</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> bits of memory. For sparse graphs (graphs with $$mathscr {O}(n)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> edges), this matches the trivial lower bound of $$Omega (nlog n)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>Ω</mml:mi> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>log</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> . As planar graphs and forests have constant degeneracy, our result implies an upper bound of $$mathscr {O}(n^2)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>n</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> on their label numbers. The previously best known upper bound on the numbers needed for labelling general graphs with the minimum number of isolated vertices was $$mathscr {O}(4^n)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mn>4</mml:mn> <mml:mi>n</mml:mi> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> , due to Kratochvíl, Miller & Nguyen (2001). Furthermore, ","PeriodicalId":22832,"journal":{"name":"Theory of Computing Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135236029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improved Lower and Upper Bounds on the Tile Complexity of Uniquely Self-Assembling a Thin Rectangle Non-Cooperatively in 3D","authors":"David Furcy, Scott M. Summers, Logan Withers","doi":"10.1007/s00224-023-10137-9","DOIUrl":"https://doi.org/10.1007/s00224-023-10137-9","url":null,"abstract":"","PeriodicalId":22832,"journal":{"name":"Theory of Computing Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135520267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vladan Gloncak, Jarl Emil Erla Munkstrup, Jakob Grue Simonsen
{"title":"Implicit Representation of Relations","authors":"Vladan Gloncak, Jarl Emil Erla Munkstrup, Jakob Grue Simonsen","doi":"10.1007/s00224-023-10141-z","DOIUrl":"https://doi.org/10.1007/s00224-023-10141-z","url":null,"abstract":"","PeriodicalId":22832,"journal":{"name":"Theory of Computing Systems","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47723134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jaroslav Garvardt, Christian Komusiewicz, Frank Sommer
{"title":"The Parameterized Complexity of s-Club with Triangle and Seed Constraints","authors":"Jaroslav Garvardt, Christian Komusiewicz, Frank Sommer","doi":"10.1007/s00224-023-10135-x","DOIUrl":"https://doi.org/10.1007/s00224-023-10135-x","url":null,"abstract":"Abstract The s - Club problem asks whether a given undirected graph G contains a vertex set S of size at least k such that G [ S ], the subgraph of G induced by S , has diameter at most s . We consider variants of s - Club where one additionally demands that each vertex of G [ S ] is contained in at least $$ell $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ℓ</mml:mi> </mml:math> triangles in G [ S ], that each edge of G [ S ] is contained in at least $$ell $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ℓ</mml:mi> </mml:math> triangles in G [ S ], or that S contains a given set W of seed vertices. We show that in general these variants are W[1]-hard when parameterized by the solution size k , making them significantly harder than the unconstrained s - Club problem. On the positive side, we obtain some FPT algorithms for the case when $$ell =1$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>ℓ</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> and for the case when G [ W ], the graph induced by the set of seed vertices, is a clique.","PeriodicalId":22832,"journal":{"name":"Theory of Computing Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134977843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stability and Welfare in (Dichotomous) Hedonic Diversity Games","authors":"Andreas Darmann","doi":"10.1007/s00224-023-10138-8","DOIUrl":"https://doi.org/10.1007/s00224-023-10138-8","url":null,"abstract":"","PeriodicalId":22832,"journal":{"name":"Theory of Computing Systems","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47414897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Expansivity and Periodicity in Algebraic Subshifts","authors":"Jarkko Kari","doi":"10.1007/s00224-023-10139-7","DOIUrl":"https://doi.org/10.1007/s00224-023-10139-7","url":null,"abstract":"Abstract A d -dimensional configuration $$c:mathbb {Z}^dlongrightarrow A$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>c</mml:mi> <mml:mo>:</mml:mo> <mml:msup> <mml:mrow> <mml:mi>Z</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:mo>⟶</mml:mo> <mml:mi>A</mml:mi> </mml:mrow> </mml:math> is a coloring of the d -dimensional infinite grid by elements of a finite alphabet $$Asubseteq mathbb {Z}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>⊆</mml:mo> <mml:mi>Z</mml:mi> </mml:mrow> </mml:math> . The configuration c has an annihilator if a non-trivial linear combination of finitely many translations of c is the zero configuration. Writing c as a d -variate formal power series, the annihilator is conveniently expressed as a d -variate Laurent polynomial f whose formal product with c is the zero power series. More generally, if the formal product is a strongly periodic configuration, we call the polynomial f a periodizer of c . A common annihilator (periodizer) of a set of configurations is called an annihilator (periodizer, respectively) of the set. In particular, we consider annihilators and periodizers of d -dimensional subshifts, that is, sets of configurations defined by disallowing some local patterns. We show that a $$(d-1)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>d</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> -dimensional linear subspace $$Ssubseteq mathbb {R}^d$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>S</mml:mi> <mml:mo>⊆</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> </mml:mrow> </mml:math> is expansive for a subshift if the subshift has a periodizer whose support contains exactly one element of S . As a subshift is known to be finite if all $$(d-1)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>d</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> -dimensional subspaces are expansive, we obtain a simple necessary condition on the periodizers that guarantees finiteness of a subshift or, equivalently, strong periodicity of a configuration. We provide examples in terms of tilings of $$mathbb {Z}^d$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>Z</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> </mml:math> by translations of a single tile.","PeriodicalId":22832,"journal":{"name":"Theory of Computing Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135800782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}