Vladan Gloncak, Jarl Emil Erla Munkstrup, Jakob Grue Simonsen
{"title":"Implicit Representation of Relations","authors":"Vladan Gloncak, Jarl Emil Erla Munkstrup, Jakob Grue Simonsen","doi":"10.1007/s00224-023-10141-z","DOIUrl":"https://doi.org/10.1007/s00224-023-10141-z","url":null,"abstract":"","PeriodicalId":22832,"journal":{"name":"Theory of Computing Systems","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47723134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jaroslav Garvardt, Christian Komusiewicz, Frank Sommer
{"title":"The Parameterized Complexity of s-Club with Triangle and Seed Constraints","authors":"Jaroslav Garvardt, Christian Komusiewicz, Frank Sommer","doi":"10.1007/s00224-023-10135-x","DOIUrl":"https://doi.org/10.1007/s00224-023-10135-x","url":null,"abstract":"Abstract The s - Club problem asks whether a given undirected graph G contains a vertex set S of size at least k such that G [ S ], the subgraph of G induced by S , has diameter at most s . We consider variants of s - Club where one additionally demands that each vertex of G [ S ] is contained in at least $$ell $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ℓ</mml:mi> </mml:math> triangles in G [ S ], that each edge of G [ S ] is contained in at least $$ell $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ℓ</mml:mi> </mml:math> triangles in G [ S ], or that S contains a given set W of seed vertices. We show that in general these variants are W[1]-hard when parameterized by the solution size k , making them significantly harder than the unconstrained s - Club problem. On the positive side, we obtain some FPT algorithms for the case when $$ell =1$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>ℓ</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> and for the case when G [ W ], the graph induced by the set of seed vertices, is a clique.","PeriodicalId":22832,"journal":{"name":"Theory of Computing Systems","volume":"72 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134977843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stability and Welfare in (Dichotomous) Hedonic Diversity Games","authors":"Andreas Darmann","doi":"10.1007/s00224-023-10138-8","DOIUrl":"https://doi.org/10.1007/s00224-023-10138-8","url":null,"abstract":"","PeriodicalId":22832,"journal":{"name":"Theory of Computing Systems","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47414897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Expansivity and Periodicity in Algebraic Subshifts","authors":"Jarkko Kari","doi":"10.1007/s00224-023-10139-7","DOIUrl":"https://doi.org/10.1007/s00224-023-10139-7","url":null,"abstract":"Abstract A d -dimensional configuration $$c:mathbb {Z}^dlongrightarrow A$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>c</mml:mi> <mml:mo>:</mml:mo> <mml:msup> <mml:mrow> <mml:mi>Z</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:mo>⟶</mml:mo> <mml:mi>A</mml:mi> </mml:mrow> </mml:math> is a coloring of the d -dimensional infinite grid by elements of a finite alphabet $$Asubseteq mathbb {Z}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>⊆</mml:mo> <mml:mi>Z</mml:mi> </mml:mrow> </mml:math> . The configuration c has an annihilator if a non-trivial linear combination of finitely many translations of c is the zero configuration. Writing c as a d -variate formal power series, the annihilator is conveniently expressed as a d -variate Laurent polynomial f whose formal product with c is the zero power series. More generally, if the formal product is a strongly periodic configuration, we call the polynomial f a periodizer of c . A common annihilator (periodizer) of a set of configurations is called an annihilator (periodizer, respectively) of the set. In particular, we consider annihilators and periodizers of d -dimensional subshifts, that is, sets of configurations defined by disallowing some local patterns. We show that a $$(d-1)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>d</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> -dimensional linear subspace $$Ssubseteq mathbb {R}^d$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>S</mml:mi> <mml:mo>⊆</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> </mml:mrow> </mml:math> is expansive for a subshift if the subshift has a periodizer whose support contains exactly one element of S . As a subshift is known to be finite if all $$(d-1)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>d</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> -dimensional subspaces are expansive, we obtain a simple necessary condition on the periodizers that guarantees finiteness of a subshift or, equivalently, strong periodicity of a configuration. We provide examples in terms of tilings of $$mathbb {Z}^d$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>Z</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> </mml:math> by translations of a single tile.","PeriodicalId":22832,"journal":{"name":"Theory of Computing Systems","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135800782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Visit-Bounded Stack Automata","authors":"Jozef Jirásek, Ian McQuillan","doi":"10.1007/s00224-023-10124-0","DOIUrl":"https://doi.org/10.1007/s00224-023-10124-0","url":null,"abstract":"<p>An automaton is <i>k-visit-bounded</i> if during any computation its work tape head visits each tape cell at most <i>k</i> times. In this paper we consider stack automata which are <i>k</i>-visit-bounded for some integer <i>k</i>. This restriction resets the visits when popping (unlike similarly defined Turing machine restrictions) which we show allows the model to accept a proper superset of context-free languages and also a proper superset of languages of visit-bounded Turing machines. We study two variants of visit-bounded stack automata: one where only instructions that move the stack head downwards increase the number of visits of the destination cell, and another where any transition increases the number of visits. We prove that the two types of automata recognize the same languages. We then show that all languages recognized by visit-bounded stack automata are effectively semilinear, and hence are letter-equivalent to regular languages, which can be used to show other properties.</p>","PeriodicalId":22832,"journal":{"name":"Theory of Computing Systems","volume":"182 ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138514140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unit Read-once Refutations for Systems of Difference Constraints","authors":"K. Subramani, P. Wojciechowski","doi":"10.1007/s00224-023-10134-y","DOIUrl":"https://doi.org/10.1007/s00224-023-10134-y","url":null,"abstract":"","PeriodicalId":22832,"journal":{"name":"Theory of Computing Systems","volume":"67 1","pages":"877 - 899"},"PeriodicalIF":0.5,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41737660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Foreword: a Commemorative Issue for Alan L. Selman","authors":"E. Mayordomo, M. Ogihara, A. Rudra","doi":"10.1007/s00224-023-10123-1","DOIUrl":"https://doi.org/10.1007/s00224-023-10123-1","url":null,"abstract":"","PeriodicalId":22832,"journal":{"name":"Theory of Computing Systems","volume":"67 1","pages":"415 - 416"},"PeriodicalIF":0.5,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42059463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Computing a Partition Function of a Generalized Pattern-Based Energy over a Semiring","authors":"Rustem Takhanov","doi":"10.1007/s00224-023-10128-w","DOIUrl":"https://doi.org/10.1007/s00224-023-10128-w","url":null,"abstract":"","PeriodicalId":22832,"journal":{"name":"Theory of Computing Systems","volume":"67 1","pages":"760 - 784"},"PeriodicalIF":0.5,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41667781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Subgroup Membership in GL(2,Z)","authors":"Markus Lohrey","doi":"10.4230/LIPIcs.STACS.2021.51","DOIUrl":"https://doi.org/10.4230/LIPIcs.STACS.2021.51","url":null,"abstract":"It is shown that the subgroup membership problem for a virtually free group can be decided in polynomial time when all group elements are represented by so-called power words, i.e., words of the form $$p_1^{z_1} p_2^{z_2} cdots p_k^{z_k}$$ p 1 z 1 p 2 z 2 ⋯ p k z k . Here the $$p_i$$ p i are explicit words over the generating set of the group and all $$z_i$$ z i are binary encoded integers. As a corollary, it follows that the subgroup membership problem for the matrix group $$textsf{GL}(2,mathbb {Z})$$ GL ( 2 , Z ) can be decided in polynomial time when elements of $$textsf{GL}(2,mathbb {Z})$$ GL ( 2 , Z ) are represented by matrices with binary encoded integers. For the same input representation, it also shown that one can compute in polynomial time the index of a given finitely generated subgroup of $$textsf{GL}(2,mathbb {Z})$$ GL ( 2 , Z ) .","PeriodicalId":22832,"journal":{"name":"Theory of Computing Systems","volume":"1 1","pages":"1-26"},"PeriodicalIF":0.5,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46738350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}