The Parameterized Complexity of s-Club with Triangle and Seed Constraints

IF 0.6 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Jaroslav Garvardt, Christian Komusiewicz, Frank Sommer
{"title":"The Parameterized Complexity of s-Club with Triangle and Seed Constraints","authors":"Jaroslav Garvardt, Christian Komusiewicz, Frank Sommer","doi":"10.1007/s00224-023-10135-x","DOIUrl":null,"url":null,"abstract":"Abstract The s - Club problem asks whether a given undirected graph G contains a vertex set S of size at least k such that G [ S ], the subgraph of G induced by S , has diameter at most s . We consider variants of s - Club where one additionally demands that each vertex of G [ S ] is contained in at least $$\\ell $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ℓ</mml:mi> </mml:math> triangles in G [ S ], that each edge of G [ S ] is contained in at least $$\\ell $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ℓ</mml:mi> </mml:math> triangles in G [ S ], or that S contains a given set W of seed vertices. We show that in general these variants are W[1]-hard when parameterized by the solution size k , making them significantly harder than the unconstrained s - Club problem. On the positive side, we obtain some FPT algorithms for the case when $$\\ell =1$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>ℓ</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> and for the case when G [ W ], the graph induced by the set of seed vertices, is a clique.","PeriodicalId":22832,"journal":{"name":"Theory of Computing Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00224-023-10135-x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract The s - Club problem asks whether a given undirected graph G contains a vertex set S of size at least k such that G [ S ], the subgraph of G induced by S , has diameter at most s . We consider variants of s - Club where one additionally demands that each vertex of G [ S ] is contained in at least $$\ell $$ triangles in G [ S ], that each edge of G [ S ] is contained in at least $$\ell $$ triangles in G [ S ], or that S contains a given set W of seed vertices. We show that in general these variants are W[1]-hard when parameterized by the solution size k , making them significantly harder than the unconstrained s - Club problem. On the positive side, we obtain some FPT algorithms for the case when $$\ell =1$$ = 1 and for the case when G [ W ], the graph induced by the set of seed vertices, is a clique.

Abstract Image

具有三角形和种子约束的s-Club的参数化复杂度
s - Club问题是问给定的无向图G是否包含一个大小至少为k的顶点集s,使得由s诱导的G的子图G [s]的直径最大为s。我们考虑s - Club的变体,其中一个额外要求G [s]的每个顶点至少包含在G [s]中的$$\ell $$个三角形中,G [s]的每条边至少包含在G [s]中的$$\ell $$个三角形中,或者s包含给定集合W的种子顶点。我们表明,当解大小k参数化时,这些变量通常是W[1]-困难的,这使得它们比无约束的s - Club问题要困难得多。在积极的方面,我们得到了$$\ell =1$$ = 1和G [W](由种子顶点集合诱导的图)为团的情况下的FPT算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theory of Computing Systems
Theory of Computing Systems 工程技术-计算机:理论方法
CiteScore
1.90
自引率
0.00%
发文量
36
审稿时长
6-12 weeks
期刊介绍: TOCS is devoted to publishing original research from all areas of theoretical computer science, ranging from foundational areas such as computational complexity, to fundamental areas such as algorithms and data structures, to focused areas such as parallel and distributed algorithms and architectures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信