Expansivity and Periodicity in Algebraic Subshifts

IF 0.6 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Jarkko Kari
{"title":"Expansivity and Periodicity in Algebraic Subshifts","authors":"Jarkko Kari","doi":"10.1007/s00224-023-10139-7","DOIUrl":null,"url":null,"abstract":"Abstract A d -dimensional configuration $$c:\\mathbb {Z}^d\\longrightarrow A$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>c</mml:mi> <mml:mo>:</mml:mo> <mml:msup> <mml:mrow> <mml:mi>Z</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:mo>⟶</mml:mo> <mml:mi>A</mml:mi> </mml:mrow> </mml:math> is a coloring of the d -dimensional infinite grid by elements of a finite alphabet $$A\\subseteq \\mathbb {Z}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>⊆</mml:mo> <mml:mi>Z</mml:mi> </mml:mrow> </mml:math> . The configuration c has an annihilator if a non-trivial linear combination of finitely many translations of c is the zero configuration. Writing c as a d -variate formal power series, the annihilator is conveniently expressed as a d -variate Laurent polynomial f whose formal product with c is the zero power series. More generally, if the formal product is a strongly periodic configuration, we call the polynomial f a periodizer of c . A common annihilator (periodizer) of a set of configurations is called an annihilator (periodizer, respectively) of the set. In particular, we consider annihilators and periodizers of d -dimensional subshifts, that is, sets of configurations defined by disallowing some local patterns. We show that a $$(d-1)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>d</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> -dimensional linear subspace $$S\\subseteq \\mathbb {R}^d$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>S</mml:mi> <mml:mo>⊆</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> </mml:mrow> </mml:math> is expansive for a subshift if the subshift has a periodizer whose support contains exactly one element of S . As a subshift is known to be finite if all $$(d-1)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>d</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> -dimensional subspaces are expansive, we obtain a simple necessary condition on the periodizers that guarantees finiteness of a subshift or, equivalently, strong periodicity of a configuration. We provide examples in terms of tilings of $$\\mathbb {Z}^d$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>Z</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> </mml:math> by translations of a single tile.","PeriodicalId":22832,"journal":{"name":"Theory of Computing Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00224-023-10139-7","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract A d -dimensional configuration $$c:\mathbb {Z}^d\longrightarrow A$$ c : Z d A is a coloring of the d -dimensional infinite grid by elements of a finite alphabet $$A\subseteq \mathbb {Z}$$ A Z . The configuration c has an annihilator if a non-trivial linear combination of finitely many translations of c is the zero configuration. Writing c as a d -variate formal power series, the annihilator is conveniently expressed as a d -variate Laurent polynomial f whose formal product with c is the zero power series. More generally, if the formal product is a strongly periodic configuration, we call the polynomial f a periodizer of c . A common annihilator (periodizer) of a set of configurations is called an annihilator (periodizer, respectively) of the set. In particular, we consider annihilators and periodizers of d -dimensional subshifts, that is, sets of configurations defined by disallowing some local patterns. We show that a $$(d-1)$$ ( d - 1 ) -dimensional linear subspace $$S\subseteq \mathbb {R}^d$$ S R d is expansive for a subshift if the subshift has a periodizer whose support contains exactly one element of S . As a subshift is known to be finite if all $$(d-1)$$ ( d - 1 ) -dimensional subspaces are expansive, we obtain a simple necessary condition on the periodizers that guarantees finiteness of a subshift or, equivalently, strong periodicity of a configuration. We provide examples in terms of tilings of $$\mathbb {Z}^d$$ Z d by translations of a single tile.

Abstract Image

代数子移位的扩张性与周期性
d维构形$$c:\mathbb {Z}^d\longrightarrow A$$ c: Z d ? A是用有限字母的元素对d维无限网格的着色$$A\subseteq \mathbb {Z}$$ A≠Z。构型c有湮灭子如果c的有限多个平移的非平凡线性组合是零构型。将c写成d变量形式幂级数,湮灭子可以方便地表示为d变量洛朗多项式f,它与c的形式积是零幂级数。更一般地说,如果形式积是一个强周期构型,我们称多项式f为c的周期器。一组构型的公共湮灭子(周期子)称为该集合的湮灭子(分别为周期子)。特别地,我们考虑了d维子位移的湮灭子和周期子,即通过不允许某些局部模式定义的组态集。我们证明了$$(d-1)$$ (d - 1)维线性子空间$$S\subseteq \mathbb {R}^d$$ S∈R d对于子位移是可扩展的,如果子位移有一个周期器,其支撑只包含S的一个元素。如果所有$$(d-1)$$ (d - 1)维子空间都是可扩张的,则子位移是有限的,我们在周期器上得到了保证子位移有限的一个简单必要条件,或者等价地,保证构型的强周期性。我们提供了通过翻译单个瓷砖来平铺$$\mathbb {Z}^d$$ Z d的示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theory of Computing Systems
Theory of Computing Systems 工程技术-计算机:理论方法
CiteScore
1.90
自引率
0.00%
发文量
36
审稿时长
6-12 weeks
期刊介绍: TOCS is devoted to publishing original research from all areas of theoretical computer science, ranging from foundational areas such as computational complexity, to fundamental areas such as algorithms and data structures, to focused areas such as parallel and distributed algorithms and architectures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信