{"title":"Expansivity and Periodicity in Algebraic Subshifts","authors":"Jarkko Kari","doi":"10.1007/s00224-023-10139-7","DOIUrl":null,"url":null,"abstract":"Abstract A d -dimensional configuration $$c:\\mathbb {Z}^d\\longrightarrow A$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>c</mml:mi> <mml:mo>:</mml:mo> <mml:msup> <mml:mrow> <mml:mi>Z</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:mo>⟶</mml:mo> <mml:mi>A</mml:mi> </mml:mrow> </mml:math> is a coloring of the d -dimensional infinite grid by elements of a finite alphabet $$A\\subseteq \\mathbb {Z}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>⊆</mml:mo> <mml:mi>Z</mml:mi> </mml:mrow> </mml:math> . The configuration c has an annihilator if a non-trivial linear combination of finitely many translations of c is the zero configuration. Writing c as a d -variate formal power series, the annihilator is conveniently expressed as a d -variate Laurent polynomial f whose formal product with c is the zero power series. More generally, if the formal product is a strongly periodic configuration, we call the polynomial f a periodizer of c . A common annihilator (periodizer) of a set of configurations is called an annihilator (periodizer, respectively) of the set. In particular, we consider annihilators and periodizers of d -dimensional subshifts, that is, sets of configurations defined by disallowing some local patterns. We show that a $$(d-1)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>d</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> -dimensional linear subspace $$S\\subseteq \\mathbb {R}^d$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>S</mml:mi> <mml:mo>⊆</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> </mml:mrow> </mml:math> is expansive for a subshift if the subshift has a periodizer whose support contains exactly one element of S . As a subshift is known to be finite if all $$(d-1)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>d</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> -dimensional subspaces are expansive, we obtain a simple necessary condition on the periodizers that guarantees finiteness of a subshift or, equivalently, strong periodicity of a configuration. We provide examples in terms of tilings of $$\\mathbb {Z}^d$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>Z</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> </mml:math> by translations of a single tile.","PeriodicalId":22832,"journal":{"name":"Theory of Computing Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00224-023-10139-7","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract A d -dimensional configuration $$c:\mathbb {Z}^d\longrightarrow A$$ c:Zd⟶A is a coloring of the d -dimensional infinite grid by elements of a finite alphabet $$A\subseteq \mathbb {Z}$$ A⊆Z . The configuration c has an annihilator if a non-trivial linear combination of finitely many translations of c is the zero configuration. Writing c as a d -variate formal power series, the annihilator is conveniently expressed as a d -variate Laurent polynomial f whose formal product with c is the zero power series. More generally, if the formal product is a strongly periodic configuration, we call the polynomial f a periodizer of c . A common annihilator (periodizer) of a set of configurations is called an annihilator (periodizer, respectively) of the set. In particular, we consider annihilators and periodizers of d -dimensional subshifts, that is, sets of configurations defined by disallowing some local patterns. We show that a $$(d-1)$$ (d-1) -dimensional linear subspace $$S\subseteq \mathbb {R}^d$$ S⊆Rd is expansive for a subshift if the subshift has a periodizer whose support contains exactly one element of S . As a subshift is known to be finite if all $$(d-1)$$ (d-1) -dimensional subspaces are expansive, we obtain a simple necessary condition on the periodizers that guarantees finiteness of a subshift or, equivalently, strong periodicity of a configuration. We provide examples in terms of tilings of $$\mathbb {Z}^d$$ Zd by translations of a single tile.
期刊介绍:
TOCS is devoted to publishing original research from all areas of theoretical computer science, ranging from foundational areas such as computational complexity, to fundamental areas such as algorithms and data structures, to focused areas such as parallel and distributed algorithms and architectures.