Josephine H Pedder, Adam M Sonabend, Michael D Cearns, Benedict D Michael, Rasheed Zakaria, Amy B Heimberger, Michael D Jenkinson, David Dickens
{"title":"Crossing the blood–brain barrier: emerging therapeutic strategies for neurological disease","authors":"Josephine H Pedder, Adam M Sonabend, Michael D Cearns, Benedict D Michael, Rasheed Zakaria, Amy B Heimberger, Michael D Jenkinson, David Dickens","doi":"10.1016/s1474-4422(24)00476-9","DOIUrl":"https://doi.org/10.1016/s1474-4422(24)00476-9","url":null,"abstract":"The blood–brain barrier is a physiological barrier that can prevent both small and complex drugs from reaching the brain to exert a pharmacological effect. For treatment of neurological diseases, drug concentrations at the target site are a fundamental parameter for therapeutic effect; thus, the blood–brain barrier is a major obstacle to overcome. Novel strategies have been developed to circumvent the blood–brain barrier, including CSF delivery, intracranial delivery, ultrasound-based methods, membrane transporters, receptor-mediated transcytosis, and nanotherapeutics. These approaches each have their advantages and disadvantages. CSF delivery and intracranial delivery are direct but invasive techniques that have not yet shown efficacy in clinical trials, although development of novel delivery devices might improve these approaches. Ultrasound-based disruption has shown some efficacy in clinical trials, but it can require invasive procedures. Approaches using membrane transporters and receptor-mediated transcytosis are less invasive than are other techniques, but they can have off-target effects. Nanotherapeutics have shown promise, but these strategies are in early stages of development. Advancements in drug delivery across the blood–brain barrier will require appropriately designed and powered clinical studies, with a focus on the timing of treatment, demographic and genetic considerations, head-to-head comparison with other treatment strategies (rather than a placebo), and relevant primary and secondary outcome measures.","PeriodicalId":22676,"journal":{"name":"The Lancet Neurology","volume":"74 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143020546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kristy K L Coleman, Scott Berry, Jeffrey Cummings, Ging-Yuek R Hsiung, Robert Laforce, Edward Huey, Simon Ducharme, Maria Carmela Tartaglia, Mario F Mendez, Chiadi Onyike, Kimiko Domoto-Reilly, Mario Masellis, Nathan Herrmann, Anton Porsteinsson, Michelle A Detry, Chloe Stewart, Anna L Bosse, Anna McGlothlin, Bryan Dias, Sachin Pandey, Elizabeth C Finger
{"title":"Intranasal oxytocin for apathy in people with frontotemporal dementia (FOXY): a multicentre, randomised, double-blind, placebo-controlled, adaptive, crossover, phase 2a/2b superiority trial","authors":"Kristy K L Coleman, Scott Berry, Jeffrey Cummings, Ging-Yuek R Hsiung, Robert Laforce, Edward Huey, Simon Ducharme, Maria Carmela Tartaglia, Mario F Mendez, Chiadi Onyike, Kimiko Domoto-Reilly, Mario Masellis, Nathan Herrmann, Anton Porsteinsson, Michelle A Detry, Chloe Stewart, Anna L Bosse, Anna McGlothlin, Bryan Dias, Sachin Pandey, Elizabeth C Finger","doi":"10.1016/s1474-4422(24)00456-3","DOIUrl":"https://doi.org/10.1016/s1474-4422(24)00456-3","url":null,"abstract":"<h3>Background</h3>No treatments exist for apathy in people with frontotemporal dementia. Previously, in a randomised double-blind, placebo-controlled, dose-finding study, intranasal oxytocin administration in people with frontotemporal dementia improved apathy ratings on the Neuropsychiatric Inventory over 1 week and, in a randomised, double-blind, placebo-controlled, crossover study, a single dose of 72 IU oxytocin increased blood-oxygen-level-dependent signal in limbic brain regions. We aimed to determine whether longer treatment with oxytocin improves apathy in people with frontotemporal dementia.<h3>Methods</h3>We conducted a multicentre, randomised, double-blind, placebo-controlled, adaptive, crossover, phase 2a/2b trial, enrolling participants from 11 expert frontotemporal dementia outpatient clinics across Canada and the USA. People aged 30–80 years with a diagnosis of probable frontotemporal dementia, a Neuropsychiatric Inventory apathy score of 2 or higher, a study partner who interacted with them for at least 3 h per day, and stable cognitive and behavioural medications for 30 days were eligible for inclusion. In stage 1, participants were randomly assigned (1:1:1:1:1:1) to one of three dose schedules (every day, every other day, and every third day) of 72 IU intranasal oxytocin or placebo and to the order they would received the intervention in the crossover; intranasal oxytocin or placebo were administered twice daily for 6 weeks, with a 6-week washout and then crossover to the other intervention. In stage 2, new participants were randomised (1:1) to the dose that had been determined as optimal in stage 1 or to placebo, with crossover as in stage 1. Randomisation used variable block sizes and was stratified by participant sex and Clinical Dementia Rating severity score. All kits of investigational product were identical and produced centrally, and all local teams, study staff, and participants were masked to treatment allocation and order. The primary outcome was difference in the change in Neuropsychiatric Inventory apathy scores for oxytocin versus placebo periods in the per-protocol population after 6 weeks of treatment. Safety was assessed at each visit via electrocardiogram, blood work, and collection of data on adverse events. This trial is registered at <span><span>ClinicalTrials.gov</span><svg aria-label=\"Opens in new window\" focusable=\"false\" height=\"20\" viewbox=\"0 0 8 8\"><path d=\"M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z\"></path></svg></span> (<span><span>NCT03260920</span><svg aria-label=\"Opens in new window\" focusable=\"false\" height=\"20\" viewbox=\"0 0 8 8\"><path d=\"M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z\"></path></svg></span>).<h3>Findings</h3>Between Jan 31, 2018, and Dec 11, 2020, 70 patients were screened for stage 1 and 60 (86%) were enrolled. 45 (75%) completed both treatment periods of stage 1. 72 IU oxytocin every third d","PeriodicalId":22676,"journal":{"name":"The Lancet Neurology","volume":"136 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143020640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to Lancet Neurol 2025; 24: 42–53","authors":"","doi":"10.1016/s1474-4422(25)00005-5","DOIUrl":"https://doi.org/10.1016/s1474-4422(25)00005-5","url":null,"abstract":"<em>Weidner N, Abel R, Maier D, et al. Safety and efficacy of intrathecal antibodies to Nogo-A in patients with acute cervical spinal cord injury: a randomised, double-blind, multicentre, placebo-controlled, phase 2b trial.</em> Lancet Neurol <em>2025;</em> 24: <em>42–53</em>—In this Article the author name and affiliation details for J Benito-Penalva have been updated. These corrections have been made to the online version as of Jan 10, 2025.","PeriodicalId":22676,"journal":{"name":"The Lancet Neurology","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142961667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to Lancet Neurol 2025; 24: 65–76","authors":"","doi":"10.1016/s1474-4422(24)00516-7","DOIUrl":"https://doi.org/10.1016/s1474-4422(24)00516-7","url":null,"abstract":"<em>Gettings JV, Mohammad Alizadeh Chafjiri F, Patel AA, et al</em>. <em>Diagnosis and management of status epilepticus: improving the status quo</em>. The Lancet Neurology <em>2025; <strong>24:</strong> 65–76</em>—In figure 2 of this Review, the first-line intranasal diazepam dose should have read “5–20 mg”. This correction has been made to the online version as of Dec 20, 2024.","PeriodicalId":22676,"journal":{"name":"The Lancet Neurology","volume":"265 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142866974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to Lancet Neurol 2024; 23: 1183–84","authors":"","doi":"10.1016/s1474-4422(24)00494-0","DOIUrl":"https://doi.org/10.1016/s1474-4422(24)00494-0","url":null,"abstract":"<em>Teng H, Liu Z, Xu J. Surgical treatment for chronic subdural haematoma.</em> Lancet Neurol <em>2024; <strong>23:</strong> 1183–84</em>—In this Correspondence, Jianguo Xu should have been marked as the corresponding author, with the corresponding email address xujg@scu.edu.cn. This correction has been made to the online version as of Dec 18, 2024.","PeriodicalId":22676,"journal":{"name":"The Lancet Neurology","volume":"201 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142848815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gemma Olivé-Cirera, Elianet Fonseca, Li-Wen Chen, Anna Fetta, Eugenia Martínez-Hernández, Mar Guasp, Veronica González-Álvarez, Verónica Delgadillo, Verónica Cantarín-Extremera, María Jiménez-Legido, Lorena Monge-Galindo, Ana Felipe, Beatriz Beseler, Eulàlia Turón-Viñas, Joaquín Fernández-Ramos, Maria J Martínez-González, Maria Vázquez-López, Luisa Arrabal Fernandez, Mireia Alvarez-Molinero, Beatriz Muñoz-Cabello, Thaís Armangué
{"title":"Differential diagnosis and comparison of diagnostic algorithms in children and adolescents with autoimmune encephalitis in Spain: a prospective cohort study and retrospective analysis","authors":"Gemma Olivé-Cirera, Elianet Fonseca, Li-Wen Chen, Anna Fetta, Eugenia Martínez-Hernández, Mar Guasp, Veronica González-Álvarez, Verónica Delgadillo, Verónica Cantarín-Extremera, María Jiménez-Legido, Lorena Monge-Galindo, Ana Felipe, Beatriz Beseler, Eulàlia Turón-Viñas, Joaquín Fernández-Ramos, Maria J Martínez-González, Maria Vázquez-López, Luisa Arrabal Fernandez, Mireia Alvarez-Molinero, Beatriz Muñoz-Cabello, Thaís Armangué","doi":"10.1016/s1474-4422(24)00443-5","DOIUrl":"https://doi.org/10.1016/s1474-4422(24)00443-5","url":null,"abstract":"<h3>Background</h3>The usefulness of current diagnostic approaches in children with suspected autoimmune encephalitis is unknown. We aimed to assess the diagnosis of autoimmune encephalitis in clinical practice and to compare the performance of two international diagnostic algorithms (one intended for patients of any age [general], the other intended for paediatric patients), with particular emphasis on the evaluation of patients with probable antibody-negative autoimmune encephalitis because this diagnosis suggests that immunotherapy should be continued or escalated but is difficult to establish.<h3>Methods</h3>We did a prospective cohort study that included all patients (<18 years of age) with suspected autoimmune encephalitis recruited at 40 hospitals in Spain whose physicians provided clinical information every 6 months for 2 years or more. Neural antibody testing to confirm diagnosis of antibody-positive autoimmune encephalitis was done at Institut d’Investigacions Biomèdiques August Pi i Sunyer-Hospital Clínic, Barcelona. Patients were classified according to the most probable diagnosis at last follow-up into four prespecified categories. We used multivariable logistic analysis to assess a potential association between immunotherapy and outcome in individuals with probable antibody-negative autoimmune encephalitis. We also did a retrospective analysis of agreement, assessed with the kappa index, between diagnoses made according to the general and paediatric diagnostic algorithms.<h3>Findings</h3>Between June 1, 2013, and May 31, 2021, 729 children (mean age 7·1 years [SD 4·9]; 383 boys [53%], 346 girls [47%]) with suspected autoimmune encephalitis were recruited. After a median follow-up of 36 months (IQR 26–60), patients were classified according to their most probable diagnosis: definite autoimmune encephalitis or well defined inflammatory or autoimmune disorders (n=230 [32%]); CNS infections (n=112 [15%]); inflammatory CNS disorders of unknown cause (n=81 [11%], including three (4%) with a novel Klüver-Bucy-like syndrome; and non-inflammatory disorders (n=306 [42%]), which were predominantly epileptic or psychiatric disorders (177 [58%] of 306). Neural antibodies were detected in 150 (65%) of 230 patients who had definite autoimmune encephalitis; 127 (85%) of these 150 individuals had antibodies to the NMDA receptor or myelin oligodendrocyte glycoprotein (MOG). Agreement between algorithms was excellent (kappa index 0·99, 95% CI 0·97–1·00) for the diagnosis of children with antibody-positive autoimmune encephalitis, good (0·59, 0·54–0·65) for recommendations of empiric immunotherapy, and poor (0·29, 0·21–0·37) for the diagnosis of probable antibody-negative autoimmune encephalitis. Compared with the general algorithm, the paediatric algorithm included more patients in the probable antibody-negative autoimmune encephalitis category (173 <em>vs</em> 41). These patients included some of those who had a diagnosis of CNS inflammatory disor","PeriodicalId":22676,"journal":{"name":"The Lancet Neurology","volume":"80 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142848967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}