Nick Van Horebeek, J. Vellekoop, Alexander J. Clark, N. D. de Winter, Yannick Stroobandt, R. Speijer
{"title":"A stable oxygen isotope record of weather-timescale variability in the Eocene greenhouse world, using the giant marine gastropod Campanile giganteum","authors":"Nick Van Horebeek, J. Vellekoop, Alexander J. Clark, N. D. de Winter, Yannick Stroobandt, R. Speijer","doi":"10.5194/EGUSPHERE-EGU21-3268","DOIUrl":"https://doi.org/10.5194/EGUSPHERE-EGU21-3268","url":null,"abstract":"<p>Instrumental climate data are only available for the last few hundred years. To extend this record back in time, climate proxies are used. However, on the geological timescale, the temporal resolution of most paleoclimate records does not provide information about seasonality, let alone events on the weather-timescale. These weather-timescale events are becoming more frequently integrated in models to predict future climate change, but reconstructions of variability with such short timescales in the geological record are extremely rare.</p><p>A recent study by de Winter et al. (2020) has revealed that the Eocene giant marine gastropod <em>Campanile giganteum</em> (Lamarck, 1804) had growth rates exceeding 600 mm/year along the helix, far exceeding those of most other modern and fossil molluscs. With such high growth rates, these giant gastropods have the unique potential to record weather-timescale variability in the Eocene greenhouse world. Therefore, we generated a high-resolution (mm-scale) δ<sup>18</sup>O record on a well-preserved specimen of <em>C. giganteum</em> from the Paris Basin in Fleury-la-Rivière, France, in order to generate a unique ultra-high resolution record of intra-annual, weather-timescale variability in the Eocene. Our preliminary results show a clear seasonal pattern with δ<sup>18</sup>O values ranging between 0.1‰ and -2.5‰, superimposed by weekly variations of up to 0.5‰. This could provide insights in weather patterns in the Eocene greenhouse climate and potentially allow the identification of extreme weather events.</p><p> </p><p><strong>Reference</strong></p><p>de Winter N.J., Vellekoop J., Clark A.J., Stassen P., Speijer R.P., Claeys P., (2020) The Giant Marine Gastropod <em>Campanile Giganteum</em> (Lamarck, 1804) as a High‐Resolution Archive of Seasonality in the Eocene Greenhouse World., Geochemistry, Geophysics, Geosystems, 21(4), https://doi.org/10.1029/2019GC008794</p>","PeriodicalId":22413,"journal":{"name":"The EGU General Assembly","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84080135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Van der Geest, J. Vellekoop, P. Kaskes, M. Sinnesael, J. Jagt, P. Degryse, P. Claeys
{"title":"Petrographic and geochemical fingerprinting of flints from the type-Maastrichtian (SE Netherlands and NE Belgium): implications for flint formation and provenance","authors":"H. Van der Geest, J. Vellekoop, P. Kaskes, M. Sinnesael, J. Jagt, P. Degryse, P. Claeys","doi":"10.5194/EGUSPHERE-EGU21-2335","DOIUrl":"https://doi.org/10.5194/EGUSPHERE-EGU21-2335","url":null,"abstract":"<p>The chalk deposits of the type-Maastrichtian, in the SE Netherlands and NE Belgium (the Liège-Limburg region), are characterized by abundant flint layers. Since prehistoric times, flints from this region have been used as raw materials for tool making. While the formation, cyclicity and lithostratigraphy of flint layers from the type-Maastrichtian have been previously studied, their stratigraphic, lateral and internal geochemical and petrological variability are still poorly constrained, posing challenges for tracing the provenance of flint tools. Therefore, in the context of the Maastrichtian Geoheritage Project, we are analysing <em>in-situ</em> flint samples macroscopically, microscopically and with micro-X-ray fluorescence (µXRF). The flint samples were collected from a 50-m-thick interval from the Upper Cretaceous Gulpen Formation at the former ENCI quarry (NL) and the Hallembaye quarry (BE). In contrast to averaged outcomes of bulk or portable X-ray fluorescence techniques commonly used for provenance studies of flints in geoarchaeology, the use of µXRF has the advantage of offering insights into the internal variability and heterogeneity of flints, by displaying relative distributions of major and trace elements within flint samples. Our preliminary results show that flint nodules from the Gulpen Formation can be subdivided based on composition. Flint layers in the middle part of this formation (Vijlen Member) show a high contribution of micrite, in addition to silica, and display a heterogeneous distribution of elements such as Ca, S, K, Fe, Rb and Sr, while flint layers from the overlying Lixhe 1-3 members consist predominantly of silica and have a more homogeneous distribution of chemical elements. Both types of flint layers contain biogenic inclusions, such as fragments of sponge spicules, echinoids, shells and benthic/planktic foraminifera, and other minerals, including iron sulphides and glauconite, but with a different abundance. The observed heterogeneity and variability within the flint nodules might not only be useful for tracing the provenance of flint tools, but could also provide insights into the complex formation of flints.</p>","PeriodicalId":22413,"journal":{"name":"The EGU General Assembly","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72692121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"How do transitions affect the wave overtopping flow locally as well as downstream?","authors":"Vera M. van Bergeijk, J. Warmink, S. Hulscher","doi":"10.5194/EGUSPHERE-EGU21-679","DOIUrl":"https://doi.org/10.5194/EGUSPHERE-EGU21-679","url":null,"abstract":"<p>Wave overtopping on grass-covered dikes results in erosion of the dike cover. Once the dike cover is eroded, the core will be washed away and the dike breaches, leading to flooding of the hinterland. Transitions between grass covers and revetments or geometric transitions are vulnerable for cover erosion and are therefore the most likely locations to initiate dike breach. These transitions affect the overtopping flow and thereby the hydraulic load on the dike cover. For example, bed roughness differences can create additional turbulence and slope changes can result in the formation of a jet that increases the load at the jet impact location. Although it is known that dike cover failure often starts at transitions, the effect of transitions on the hydraulic load remains unknown.</p><p>We developed a detailed numerical 2DV model in OpenFOAM for the overtopping flow over the crest and the landward slope of a grass-covered dike. This model is used to study the effects of transitions on the overtopping flow variables including the flow velocity, shear stress, normal stress and pressure. Several types of transitions are studied such as revetment transitions, slope changes and height differences. </p><p>The results show that the shear stress, normal stress and pressure increase significantly at geometric transitions such as the transition from the crest to the slope and at the landward toe. The increase depends on the wave volume and the geometry of the dike such as the steepness and length of the landward slope. Furthermore, the results show that roughness changes at revetment transition on a grass-covered crest has no influence on the maximum shear stress, maximum normal stress and maximum pressure. The flow velocity increases from a rough to a smooth revetment, while the opposite occurs for the transition from a smooth to a rough revetment. The variation in the flow velocity is well described by analytical formulas for the maximum flow velocity along the dike profile. These formulas are also able to describe the variation in flow velocity for a revetment transition on a berm on the landward slope. In this case, the shear stress increases from a smooth to a rough revetment and decreases from a rough to a smooth revetment. This means that a rough revetment can locally reduce the shear stress, however the transitions have no effect on the shear stress downstream.</p><p>These model results are used to obtain relations for the increase in the hydraulic variables at transitions. These relations can be used to describe the effect of transitions on the hydraulic load in models for grass cover failure by overtopping waves. Accurate descriptions of the hydraulic load in these models will improve the failure assessment of grass-covered dikes with transitions.</p>","PeriodicalId":22413,"journal":{"name":"The EGU General Assembly","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88089048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Participation Without Power: A Critical Discourse Analysis of Community Meetings in North Denver","authors":"S. Sideris","doi":"10.33011/ASSEMBLY.V3I1.1013","DOIUrl":"https://doi.org/10.33011/ASSEMBLY.V3I1.1013","url":null,"abstract":"Universities help shape cities. Historical forms of racial domination repeat themselves, reproducing spatial subordination. In Denver, residences and businesses owned by families of color will be cleared as Colorado State University (CSU), two museums, and the mayor’s office redevelop the area to build an educational hub. An examination of Citizens Advisory Committee (CAC) meeting transcripts shows that relationships between the higher education institution and the city are changing in racialized ways, as normative institutions overpower low-income communities of color. Reading discursive events from CAC meetings through a theoretical lens reveals the CSU expansion to be an instance of a predominantly white institution working with city leaders to remove people from land so it can be used to better fulfill economic ambitions, exemplifying theories about the spatialization of race and the racialization of space (Lipsitz, 2006, 2007, 2011). This occurrence has implications for higher education researchers and municipal leaders beyond Denver.","PeriodicalId":22413,"journal":{"name":"The EGU General Assembly","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79862391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Hermans, H. Michel, Jorge Lopez-Alvis, F. Nguyen
{"title":"Imaging the subsurface to inform hydrological models: a geophysicist’s perspective","authors":"T. Hermans, H. Michel, Jorge Lopez-Alvis, F. Nguyen","doi":"10.5194/EGUSPHERE-EGU21-319","DOIUrl":"https://doi.org/10.5194/EGUSPHERE-EGU21-319","url":null,"abstract":"<p>Heterogeneity plays a major role in subsurface processes from the local scale (preferential infiltration and flow paths, fractures) to the catchment scale (presence of lateral and vertical variability, multiple horizons, bedrock interface, etc.). If high-resolution direct observations are often available through drillholes, CPT or installing in-situ monitoring probes, those local measurements only provide punctual or 1D information. Within this context, geophysical techniques can provide relevant spatially-distributed information (2D, 3D or even 4D) with a much larger coverage than direct measurements. However, geophysical information remains indirect and must be translated into the sought parameter through petrophysical or transfer functions. </p><p>Geophysicists are facing two important issues when imaging the subsurface: 1) Generating images of the subsurface that are consistent in terms of soil or geological structures; 2) Integrating the geophysical information into hydrological models. Both issues will be discussed in this contribution.</p><p>Geophysical imaging is the result of an inversion process whose solution is non-unique. This problem is generally solved using a regularization approach introducing some a priori characteristics of the model. The dominant choice is still the smoothness constraint inversion, which often introduces a too simplistic representation of the subsurface, and decreases the potential of geophysics to discriminate between different facies. In the first part of this contribution, we will analyze what can be expected from geophysical methods in terms of characterization of the heterogeneity. We will illustrate how the inversion method affects the discrimination potential of geophysics, and how we can improve the geophysical image by accounting for prior information. We will see how the discrimination potential decreases with the loss of resolution. Finally, we will investigate how recent methodologies using machine learning can improve our ability to image the subsurface.</p><p>Given the high spatial coverage of geophysical methods, they have a huge potential to inform hydrological models in terms of heterogeneity. However, the limitations related to geophysical inversion also make the geophysical model uncertain and the risk to propagate erroneous information exists. In the second part of this contribution, we will illustrate how to incorporate geophysical data into hydrological models to unravel their spatial complexity. At the early stage of a project, several scenarios regarding spatial heterogeneity are often possible (orientation of fractures, number of facies to consider, interconnection within one facies, etc.), and this can largely influence the outcomes of the hydrological models. In this context, geophysical data can be used to verify the consistency of some scenarios without requiring any inversion in a process called falsification. Once realistic scenarios have been identified, geophysical data","PeriodicalId":22413,"journal":{"name":"The EGU General Assembly","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89980347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Dari, P. Quintana-Seguí, M. Escorihuela, V. Stefan, R. Morbidelli, C. Saltalippi, A. Flammini, L. Brocca
{"title":"Irrigation Estimates from Remote Sensing Soil Moisture: A District-Scale Analysis in Spain","authors":"J. Dari, P. Quintana-Seguí, M. Escorihuela, V. Stefan, R. Morbidelli, C. Saltalippi, A. Flammini, L. Brocca","doi":"10.5194/EGUSPHERE-EGU21-2914","DOIUrl":"https://doi.org/10.5194/EGUSPHERE-EGU21-2914","url":null,"abstract":"<p>Irrigation represents a primary source of anthropogenic water consumption, whose effects impact on the natural distribution of water on the Earth’s surface and on food production. Over anthropized basins, irrigation often represents the missing variable to properly close the hydrological balance. Despite this, detailed information on the amounts of water actually applied for irrigation is lacking worldwide. In this study, a method to estimate irrigation volumes applied over a heavily irrigated area in the North East of Spain through high-resolution (1 km) remote sensing soil moisture is presented. Two DISPATCH (DISaggregation based on Physical And Theoretical scale CHange) downscaled data sets have been used: SMAP (Soil Moisture Active Passive) and SMOS (Soil Moisture and Ocean Salinity). The SMAP experiment covers the period from January 2016 to September 2017, while the SMOS experiment is referred to the time span from January 2011 to September 2017. The irrigation amounts have been retrieved through the SM2RAIN algorithm, in which the guidelines provided in the FAO (Food and Agriculture Organization) paper n.56 about the crop evapotranspiration have been implemented for a proper modeling of the crop evapotranspiration. A more detailed analysis has been performed in the context of the SMAP experiment. In fact, the spatial distribution and the temporal occurrence of the irrigation events have been investigated. Furthermore, the loss of accuracy of the irrigation estimates when using different sources for the evapotranspiration data has been assessed. In order to do this, the SMAP experiment has been repeated by forcing the SM2RAIN algorithm with several evapotranspiration data sets, both calculated and observed. Finally, the merging of the results obtained through the two experiments has produced a data set of almost 7 years of irrigation estimated from remote sensing soil moisture.</p>","PeriodicalId":22413,"journal":{"name":"The EGU General Assembly","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84748420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Active thrusting and glacial controls recorded by stratigraphic unconformities in a Quaternary foreland basin (Po basin, Northern Italy)","authors":"C. Zuffetti, R. Bersezio","doi":"10.5194/egusphere-egu21-9250","DOIUrl":"https://doi.org/10.5194/egusphere-egu21-9250","url":null,"abstract":"<p>In active foreland basins, stratigraphic unconformities develop on the flanks and crests of the uplifting thrust-related structures and correspond to correlative conformities in the adjacent depocenters. The geometrical, morphological, stratigraphic, sedimentological, and petrographic attributes of unconformities and associated sediments are highly variable from the uplifting to the subsiding basin sectors. In Quaternary continental foreland basins, landscape evolution, sedimentation, and the nature of the geological boundaries are controlled by the competing turnovers of climate (i.e. glacial advances and retreats) and tectonics (i.e. steady-state uplift/subsidence vs. unsteady deformation increments).</p><p>In order to recognize the fingerprints of tectonic and climatic factors on the nature of the stratigraphic unconformities, we studied the Pleistocene shallow marine (Calabrian) to alluvial and glacio-fluvial sediments (Calabrian-Latest Pleistocene) associated to the active external arc of the N-Apennine thrusts in the Quaternary Po basin of Lombardy (N-Italy).</p><p>A set of intra-basin reliefs corresponding to ramp-folds was the key-site to describe the nature and attributes of the exposed Pleistocene unconformities and stratigraphy. We integrated different-scale geological, sedimentological, stratigraphic, geo-pedological, geomorphological, and structural field surveys, constrained by C14 and OSL age determinations, to down-trace the stratigraphic boundaries to the subsurface and to assist correlation of borehole logs and geophysical images. The surface facies associations of the stratigraphic units were compared to the litho-textural associations of their subsurface equivalents to draw the best fitting surface-subsurface model, which was constrained to the geological evolution and chronostratigraphy. A hierarchic 3D geological model was computed by the potential field method, which includes the 4D attributes of the stratigraphic boundaries and unconformities organized into three hierarchic orders. Among them, five Quaternary high-rank, and seven intermediate-rank unconformities were recognized.</p><p>The high-rank unconformities (Gelasian, intra-Calabrian, Early-Middle Pleistocene, Late Pleistocene and Latest Pleistocene-Holocene unconformities) are erosional, angular (high angle), composite, diachronous surfaces. They originated in front of and above the uplifting ramp-folds, where the discrete, polyphase, and unsteady propagation stages of the blind outermost Apennines arc directly controlled sedimentation, erosion, and accommodation patterns. The intermediate- and low-rank stratigraphic boundaries are either: (i) stratigraphic surfaces of erosion and deposition, occasionally with low-angle unconformity; (ii) stratigraphic surfaces of aggradation (covered by late Pleistocene loess units at places); (iii) morphological surfaces of stabilization marked by (paleo-) soils. These attributes and the 3D relations with the high-rank unconfor","PeriodicalId":22413,"journal":{"name":"The EGU General Assembly","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81556096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Modanesi, C. Massari, A. Gruber, L. Brocca, H. Lievens, R. Morbidelli, Gabrielle J. M. De Lannoy
{"title":"On the ability of Sentinel-1 backscatter to detect soil moisture and vegetation changes caused by irrigation fluxes over the Po River Valley (Italy)","authors":"S. Modanesi, C. Massari, A. Gruber, L. Brocca, H. Lievens, R. Morbidelli, Gabrielle J. M. De Lannoy","doi":"10.5194/EGUSPHERE-EGU21-2212","DOIUrl":"https://doi.org/10.5194/EGUSPHERE-EGU21-2212","url":null,"abstract":"<p>Worldwide, the amount of water used for agricultural purposes is rising because of an increasing food demand. In this context, the detection and quantification of irrigation is crucial, but the availability of ground observations is limited. Therefore, an increasing number of studies are focusing on the use of models and satellite data to detect and quantify irrigation. For instance, the parameterization of irrigation in large scale Land Surface Models (LSM) is improving, but it is still characterized by simplifying assumptions, such as the lack of dynamic crop information, the extent of irrigated areas, and the mostly unknown timing and amount of irrigation. Remote sensing observations offer an opportunity to fill this gap as they are directly affected by, and hence potentially able to detect, irrigation. Therefore, combining models and satellite information through data assimilation can offer a viable way to quantify the water used for irrigation.</p><p>The aim of this study is to test how well modelled soil moisture and vegetation estimates from the Noah-MP LSM, with or without irrigation parameterization in the NASA Land Information System (LIS), are able to mimic in situ observations or to capture the signal of high-resolution Sentinel-1 backscatter observations in an irrigated area. The experiments were carried out over select sites in the Po river Valley, an important agricultural area in Northern Italy. To prepare for a data assimilation system, Level-1 Sentinel-1 backscatter observations, aggregated and sampled onto the 1 km EASE-v2 grid, were used to calibrate a Water Cloud Model (WCM) using simulated soil moisture and Leaf Area Index estimates. The WCM was calibrated with and without activating an irrigation scheme in Noah-MP. Results demonstrate that the use of the irrigation scheme provides the optimal calibration of the WCM, confirming the ability of Sentinel-1 to track the impact of human activities on the water cycle. Additionally, a first data assimilation experiment demonstrates the potential of Sentinel-1 backscatter observations to correct errors in Land Surface Model (LSM) simulations that are caused by unmodelled or wrongly modelled irrigation.</p>","PeriodicalId":22413,"journal":{"name":"The EGU General Assembly","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88284688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Heap, T. Baumann, M. Rosas-Carbajal, J. Komorowski, H. Gilg, M. Villeneuve, R. Moretti, P. Baud, L. Carbillet, Claire E. Harnett, T. Reuschlé
{"title":"The influence of hydrothermal alteration on volcano stability: a case study of La Soufrière de Guadeloupe (France)","authors":"M. Heap, T. Baumann, M. Rosas-Carbajal, J. Komorowski, H. Gilg, M. Villeneuve, R. Moretti, P. Baud, L. Carbillet, Claire E. Harnett, T. Reuschlé","doi":"10.5194/EGUSPHERE-EGU21-151","DOIUrl":"https://doi.org/10.5194/EGUSPHERE-EGU21-151","url":null,"abstract":"<p>Volcanoes are inherently unstable structures that spread and frequently experience mass wasting events (such as slope failure, rockfalls, and debris flows). Hydrothermal alteration, common to many volcanoes, is often invoked as a mechanism that contributes significantly to volcano instability. We present here a study that combines laboratory deformation experiments, geophysical data, and large-scale numerical modelling to better understand the influence of hydrothermal alteration on volcano stability. La Soufrière de Guadeloupe (France) is a hazardous andesitic volcano that hosts a large hydrothermal system and therefore represents an ideal natural laboratory for our study. Uniaxial and triaxial deformation experiments were performed on samples prepared from 17 variably-altered (alteration minerals include quartz, cristobalite, tridymite, hematite, pyrite, alunite, natro-alunite, gypsum, kaolinite, and talc) blocks collected from La Soufrière de Guadeloupe. Our uniaxial compressive strength experiments show that strength and Young’s modulus decrease as a function of increasing porosity and increasing alteration. Triaxial deformation experiments show that cohesion decreases as a function of increasing alteration, but that the angle of internal friction does not change systematically. We first combined recent muon tomography data with our laboratory data to create a 3D strength map of La Soufrière de Guadeloupe. The low-strength zone beneath the southern flank of the volcano exposed by our 3D strength map is coincident with the hydrothermal system. We then assigned laboratory-scale and upscaled mechanical properties (e.g., Young’s modulus, cohesion, and angle of internal friction) to zones identified by a recent electrical survey of the dome of La Soufrière de Guadeloupe. Numerical modelling (using the software LaMEM) was then performed on a cross-section of the volcano informed by the recent electrical data, and on a cross-section in which we artificially increased the size of the hydrothermally altered zone. Our modelling shows (1) the importance of using upscaled values in large-scale models and (2) that hydrothermal alteration significantly increases the surface velocity and strain rate of the volcanic slope. We therefore conclude, using models informed by experimental data, that hydrothermal alteration decreases volcano stability and thus expedites volcano spreading and increases the likelihood of mass wasting events and associated volcanic hazards. Hydrothermal alteration, and its evolution, should therefore be monitored at active volcanoes worldwide.</p>","PeriodicalId":22413,"journal":{"name":"The EGU General Assembly","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77626598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Do trade agreements activate new links and increase flows? A data-driven analysis of the global cereal market.","authors":"Benedetta Falsetti, L. Ridolfi, F. Laio","doi":"10.5194/EGUSPHERE-EGU21-14664","DOIUrl":"https://doi.org/10.5194/EGUSPHERE-EGU21-14664","url":null,"abstract":"<p>Given the importance of food imports for food security and the role of exports in income generation, food trade is an indispensable component of most countries’ development strategies. Global and regional agreements set the rules for trade policies between countries. In this context, we investigate the impact of trade agreements on the trade network of agricultural products. We study whether the ratification of agricultural-oriented trade agreements has an influence on the topology of the cereal trade network (link establishment) and the variation of flows through existing links.</p><p>Our analysis differs from previous studies for three main reasons. Firstly, it is a data-driven analysis, based on a dataset that combines the trade agreement structure provided by the World Bank and cereal trade flow data from FAOSTAT. Secondly, the analysis focuses on a global scale, considering data for all countries where information is available. Finally, we carried out the analysis at the level of aggregated cereals, both from a monetary (US$) and diet-based (Kcal) perspective, over the period from 1993 to 2015. This time interval includes the most important recent reforms in the agricultural sector.</p><p>The results show that a new trade agreement between two countries increases the probability of activating a grain trade link by 7.3% in the year after the agreement is ratified. In the case where trade agreements are not considered, the probability of triggering a new link between two countries drops to 1.3%.</p><p>Regarding the volume of flows, we classify variations into three categories: flow decrease (negative variation of the flux), mild increase (<50% increase in the flow intensity), and sharp increase (>50% increase).</p><p>The results obtained, both in economic value (US$) and in quantitative variations (Kcal), show that the entry force of a trade agreement has two main effects: in flows covered by trade agreements, there is a significant increase in the percentage of flows experiencing a sharp increase, and a reduction of the percentage of flows experiencing a negative variation. </p><p>We, therefore, provide here global-scale, data-based evidence. Previous results suggest that trade agreements are facilitators of the connections between different countries and, therefore, facilitators in terms of global food trade accessibility.  This work aims to be a first attempt to investigate the impacts of international agreements simultaneously on the topology of the agricultural product trade network, and on the increase of existing link flows. Our intention is to dedicate further analysis about which trade agreements perform better, increasing the traded volume, to explore the role of trade liberalization at a worldwide level.</p><p> </p>","PeriodicalId":22413,"journal":{"name":"The EGU General Assembly","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82322375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}