Small GTPasesPub Date : 2023-12-01DOI: 10.1080/21541248.2023.2254437
Akash Chinchole, Shreyta Gupta, Shweta Tyagi
{"title":"To stay in shape and keep moving: MLL emerges as a new transcriptional regulator of Rho GTPases.","authors":"Akash Chinchole, Shreyta Gupta, Shweta Tyagi","doi":"10.1080/21541248.2023.2254437","DOIUrl":"10.1080/21541248.2023.2254437","url":null,"abstract":"<p><p>RhoA, Rac1 and CDC42 are small G proteins that play a crucial role in regulating various cellular processes, such as the formation of actin cytoskeleton, cell shape and cell migration. Our recent results suggest that MLL is responsible for maintaining the balance of these small Rho GTPases. MLL depletion affects the stability of Rho GTPases, leading to a decrease in their protein levels and loss of activity. These changes manifest in the form of abnormal cell shape and disrupted actin cytoskeleton, resulting in reduced cell spreading and migration. Interestingly, their chaperone protein RhoGDI1 but not the Rho GTPases, is under the direct transcriptional regulation of MLL. Here, we comment on the possible implications of these observations on the signalling by Rho GTPases protein network.</p>","PeriodicalId":22139,"journal":{"name":"Small GTPases","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/fc/63/KSGT_14_2254437.PMC10484036.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10184340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small GTPasesPub Date : 2022-06-06DOI: 10.1080/21541248.2022.2083895
Siqi Li, C. Counter
{"title":"An ultra-sensitive method to detect mutations in human RAS templates","authors":"Siqi Li, C. Counter","doi":"10.1080/21541248.2022.2083895","DOIUrl":"https://doi.org/10.1080/21541248.2022.2083895","url":null,"abstract":"ABSTRACT The RAS family of small GTPases is mutated in roughly a fifth of human cancers. Hotspot point mutations at codons G12, G13, and Q61 account for 95% of all these mutations, which are well established to render the encoded proteins oncogenic. In humans, this family comprises three genes: HRAS, NRAS, and KRAS. Accumulating evidence argues that oncogenic RAS point mutations may be initiating, as they are often truncal in human tumours and capable of inducing tumorigenesis in mice. As such, there is great interest in detecting oncogenic mutation in the RAS genes to understand the origins of cancer, as well as for early detection purposes. To this end, we previously adapted the microbial ultra-sensitive M aximum D epth S equencing (MDS) assay for the murine Kras gene, which was capable of detecting oncogenic mutations in the tissues of mice days after carcinogen exposure, essentially capturing the very first step in tumour initiation. Given this, we report here the adaption and details of this assay to detect mutations in a human KRAS sequence at an analytic sensitivity of one mutation in a million independently barcoded templates. This humanized version of MDS can thus be exploited to detect oncogenic mutations in KRAS at an incredible sensitivity and modified for the same purpose for the other RAS genes.","PeriodicalId":22139,"journal":{"name":"Small GTPases","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42208867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small GTPasesPub Date : 2022-01-01DOI: 10.1080/21541248.2022.2141019
Dylan D Doxsey, Kristen Veinotte, Kuang Shen
{"title":"A New Crosslinking Assay to Study Guanine Nucleotide Binding in the Gtr Heterodimer of <i>S. cerevisiae</i>.","authors":"Dylan D Doxsey, Kristen Veinotte, Kuang Shen","doi":"10.1080/21541248.2022.2141019","DOIUrl":"https://doi.org/10.1080/21541248.2022.2141019","url":null,"abstract":"<p><p>The mechanistic target of rapamycin (mTOR) complex is responsible for coordinating nutrient availability with eukaryotic cell growth. Amino acid signals are transmitted towards mTOR via the Rag/Gtr heterodimers. Due to the obligatory heterodimeric architecture of the Rag/Gtr GTPases, investigating their biochemical properties has been challenging. Here, we describe an updated assay that allows us to probe the guanine nucleotide-binding affinity and kinetics to the Gtr heterodimers in <i>Saccharomyces cerevisiae</i>. We first identified the structural element that Gtr2p lacks to enable crosslinking. By using a sequence conservation-based mutation, we restored the crosslinking between Gtr2p and the bound nucleotides. Using this construct, we determined the nucleotide-binding affinities of the Gtr heterodimer, and found that it operates under a different form of intersubunit communication than human Rag GTPases. Our study defines the evolutionary divergence of the Gtr/Rag-mTOR axis of nutrient sensing.</p>","PeriodicalId":22139,"journal":{"name":"Small GTPases","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e4/6b/KSGT_13_2141019.PMC9639563.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9199885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small GTPasesPub Date : 2022-01-01DOI: 10.1080/21541248.2021.1892443
Lan Jiang, Tizhong Zhang, Kefeng Lu, Shiqian Qi
{"title":"The progress in <i>C9orf72</i> research: ALS/FTD pathogenesis, functions and structure.","authors":"Lan Jiang, Tizhong Zhang, Kefeng Lu, Shiqian Qi","doi":"10.1080/21541248.2021.1892443","DOIUrl":"https://doi.org/10.1080/21541248.2021.1892443","url":null,"abstract":"<p><p>The hexanucleotide repeat (GGGGCC) expansion in <i>C9orf72</i> is accounted for a large proportion of the genetic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The hypotheses of how the massive G4C2 repeats in <i>C9orf72</i> destroy the neurons and lead to ALS/FTD are raised and improving. As a multirole player, C9orf72 exerts critical roles in many cellular processes, including autophagy, membrane trafficking, immune response, and so on. Notably, the partners of C9orf72, through which C9orf72 participates in the cell activities, have been identified. Notably, the structures of the C9orf72-SMCR8-WDR41 complex shed light on its activity as GTPase activating proteins (GAP). In this manuscript, we reviewed the latest research progress in the C9orf72-mediated ALS/FTD, the physiological functions of C9orf72, and the putative function models of C9orf72/C9orf72-containing complex.</p>","PeriodicalId":22139,"journal":{"name":"Small GTPases","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21541248.2021.1892443","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9230612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small GTPasesPub Date : 2022-01-01DOI: 10.1080/21541248.2021.1903794
Alfredo L Porfírio-Sousa, Alexander K Tice, Matthew W Brown, Daniel J G Lahr
{"title":"Phylogenetic reconstruction and evolution of the Rab GTPase gene family in Amoebozoa.","authors":"Alfredo L Porfírio-Sousa, Alexander K Tice, Matthew W Brown, Daniel J G Lahr","doi":"10.1080/21541248.2021.1903794","DOIUrl":"https://doi.org/10.1080/21541248.2021.1903794","url":null,"abstract":"<p><p>Rab GTPase is a paralog-rich gene family that controls the maintenance of the eukaryotic cell compartmentalization system. Diverse eukaryotes have varying numbers of Rab paralogs. Currently, little is known about the evolutionary pattern of Rab GTPase in most major eukaryotic 'supergroups'. Here, we present a comprehensive phylogenetic reconstruction of the Rab GTPase gene family in the eukaryotic 'supergroup' Amoebozoa, a diverse lineage represented by unicellular and multicellular organisms. We demonstrate that Amoebozoa conserved 20 of the 23 ancestral Rab GTPases predicted to be present in the last eukaryotic common ancestor and massively expanded several 'novel' in-paralogs. Due to these 'novel' in-paralogs, the Rab family composition dramatically varies between the members of Amoebozoa; as a consequence, 'supergroup'-based studies may significantly change our current understanding of the evolution and diversity of this gene family. The high diversity of the Rab GTPase gene family in Amoebozoa makes this 'supergroup' a key lineage to study and advance our knowledge of the evolution of Rab in Eukaryotes.</p>","PeriodicalId":22139,"journal":{"name":"Small GTPases","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21541248.2021.1903794","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9072723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small GTPasesPub Date : 2022-01-01DOI: 10.1080/21541248.2021.1888557
Viviane Tran, Marie-Anne Goyette, Mónica Martínez-García, Ana Jiménez de Domingo, Daniel Martín Fernández-Mayoralas, Ana Laura Fernández-Perrone, Pilar Tirado, Beatriz Calleja-Pérez, Sara Álvarez, Jean-François Côté, Alberto Fernández-Jaén
{"title":"Biallelic <i>ELMO3</i> mutations and loss of function for DOCK-mediated RAC1 activation result in intellectual disability.","authors":"Viviane Tran, Marie-Anne Goyette, Mónica Martínez-García, Ana Jiménez de Domingo, Daniel Martín Fernández-Mayoralas, Ana Laura Fernández-Perrone, Pilar Tirado, Beatriz Calleja-Pérez, Sara Álvarez, Jean-François Côté, Alberto Fernández-Jaén","doi":"10.1080/21541248.2021.1888557","DOIUrl":"https://doi.org/10.1080/21541248.2021.1888557","url":null,"abstract":"<p><p>The engulfment and cell motility 3 (ELMO3) protein belongs to the ELMO-family of proteins. ELMO proteins form a tight complex with the DOCK1-5 guanine nucleotide exchange factors that regulate RAC1 spatiotemporal activation and signalling. DOCK proteins and RAC1 are known to have fundamental roles in central nervous system development. Here, we searched for homozygous or compound heterozygous mutations in the <i>ELMO3</i> gene in 390 whole exomes sequenced <i>in trio</i> in individuals with neurodevelopmental disorders compatible with a genetic origin. We found a compound heterozygous mutation in <i>ELMO3</i> (c.1153A>T, p.Ser385Cys and c.1009 G > A, p.Val337Ile) in a 5 year old male child with autism spectrum disorder (ASD) and developmental delay. These mutations did not interfere with the formation of an ELMO3/DOCK1 complex, but markedly impaired the ability of the complex to promote RAC1-GTP-loading. Consequently, cells expressing DOCK1 and either of the ELMO3 mutants displayed impaired migration and invasion. Collectively, our results suggest that biallelic loss-of-function mutations in <i>ELMO3</i> may cause a developmental delay and provide new insight into the role of ELMO3 in neurodevelopmental as well as the pathological consequences of <i>ELMO3</i> mutations.</p>","PeriodicalId":22139,"journal":{"name":"Small GTPases","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21541248.2021.1888557","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9089210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small GTPasesPub Date : 2022-01-01DOI: 10.1080/21541248.2021.1951590
Neda Z Ghanem, Michelle L Matter, Joe W Ramos
{"title":"Regulation of Leukaemia Associated Rho GEF (LARG/ARHGEF12).","authors":"Neda Z Ghanem, Michelle L Matter, Joe W Ramos","doi":"10.1080/21541248.2021.1951590","DOIUrl":"https://doi.org/10.1080/21541248.2021.1951590","url":null,"abstract":"<p><p>The Ras homologous (Rho) protein family of GTPases (RhoA, RhoB and RhoC) are the members of the Ras superfamily and regulate cellular processes such as cell migration, proliferation, polarization, adhesion, gene transcription and cytoskeletal structure. Rho GTPases function as molecular switches that cycle between GTP-bound (active state) and GDP-bound (inactive state) forms. Leukaemia-associated RhoGEF (LARG) is a guanine nucleotide exchange factor (GEF) that activates RhoA subfamily GTPases by promoting the exchange of GDP for GTP. LARG is selective for RhoA subfamily GTPases and is an essential regulator of cell migration and invasion. Here, we describe the mechanisms by which LARG is regulated to facilitate the understanding of how LARG mediates functions like cell motility and to provide insight for better therapeutic targeting of these functions.</p>","PeriodicalId":22139,"journal":{"name":"Small GTPases","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21541248.2021.1951590","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10524920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small GTPasesPub Date : 2022-01-01DOI: 10.1080/21541248.2021.1939631
Mai Izumida, Katsura Kakoki, Hideki Hayashi, Toshifumi Matsuyama, Yoshinao Kubo
{"title":"Rab3a, a small GTP-binding protein, is required for the stabilization of the murine leukaemia virus Gag protein.","authors":"Mai Izumida, Katsura Kakoki, Hideki Hayashi, Toshifumi Matsuyama, Yoshinao Kubo","doi":"10.1080/21541248.2021.1939631","DOIUrl":"https://doi.org/10.1080/21541248.2021.1939631","url":null,"abstract":"<p><p>We recently identified a CD63-interacting protein to understand the role of CD63 in virion production of the human immunodeficiency virus type 1, and we have found that Rab3a forms a complex with CD63. In this study, we analysed the effect of Rab3a on virion production of the murine leukaemia virus (MLV), which is another member of the retrovirus family. We found that Rab3a silencing induced lysosomal degradation of the MLV Gag protein, and recovery of the Rab3a expression restored the level of the Gag protein through a complex formation of MLV Gag and Rab3a, indicating that Rab3a is required for MLV Gag protein expression. In contrast, CD63 silencing decreased the infectivity of released virions but had no effect on virion production, indicating that CD63 facilitates the infectivity of released MLV particles. Although Rab3a induced CD63 degradation in uninfected cells, the complex of MLV Gag and Rab3a suppressed the Rab3a-mediated CD63 degradation in MLV-infected cells. Finally, we found that the MLV Gag protein interacts with Rab3a to stabilize its own protein and CD63 that facilitates the infectivity of released MLV particles. Considering the involvement of Rab3a in lysosome trafficking to the plasma membrane, it may also induce cell surface transport of the MLV Gag protein.</p>","PeriodicalId":22139,"journal":{"name":"Small GTPases","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21541248.2021.1939631","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10579182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small GTPasesPub Date : 2022-01-01Epub Date: 2021-09-24DOI: 10.1080/21541248.2021.1979360
Magali Mathieu, Valérie Steier, Florence Fassy, Cécile Delorme, David Papin, Bruno Genet, Francis Duffieux, Thomas Bertrand, Laure Delarbre, Hélène Le-Borgne, Annick Parent, Patrick Didier, Jean-Pierre Marquette, Maryse Lowinski, Jacques Houtmann, Annabelle Lamberton, Laurent Debussche, Rak Alexey
{"title":"KRAS G12C fragment screening renders new binding pockets.","authors":"Magali Mathieu, Valérie Steier, Florence Fassy, Cécile Delorme, David Papin, Bruno Genet, Francis Duffieux, Thomas Bertrand, Laure Delarbre, Hélène Le-Borgne, Annick Parent, Patrick Didier, Jean-Pierre Marquette, Maryse Lowinski, Jacques Houtmann, Annabelle Lamberton, Laurent Debussche, Rak Alexey","doi":"10.1080/21541248.2021.1979360","DOIUrl":"https://doi.org/10.1080/21541248.2021.1979360","url":null,"abstract":"<p><p>KRAS genes belong to the most frequently mutated family of oncogenes in cancer. The G12C mutation, found in a third of lung, half of colorectal and pancreatic cancer cases, is believed to be responsible for a substantial number of cancer deaths. For 30 years, KRAS has been the subject of extensive drug-targeting efforts aimed at targeting KRAS protein itself, but also its post-translational modifications, membrane localization, protein-protein interactions and downstream signalling pathways. So far, most KRAS targeting strategies have failed, and there are no KRAS-specific drugs available. However, clinical candidates targeting the KRAS G12C protein have recently been developed. MRTX849 and recently approved Sotorasib are covalent binders targeting the mutated cysteine 12, occupying Switch II pocket.Herein, we describe two fragment screening drug discovery campaigns that led to the identification of binding pockets on the KRAS G12C surface that have not previously been described. One screen focused on non-covalent binders to KRAS G12C, the other on covalent binders.</p>","PeriodicalId":22139,"journal":{"name":"Small GTPases","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8923024/pdf/KSGT_13_1979360.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39444572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small GTPasesPub Date : 2022-01-01DOI: 10.1080/21541248.2022.2089001
Neda S Kazemein Jasemi, Mohammad R Ahmadian
{"title":"Allosteric regulation of GRB2 modulates RAS activation.","authors":"Neda S Kazemein Jasemi, Mohammad R Ahmadian","doi":"10.1080/21541248.2022.2089001","DOIUrl":"https://doi.org/10.1080/21541248.2022.2089001","url":null,"abstract":"<p><p>RAS activation is a multiple-step process in which linkage of the extracellular stimuli to the RAS activator SOS1 is the main step in RAS activation. GRB2 adaptor protein is the main modulator in SOS1 recruitment to the plasma membrane and its activation. This interaction is well studied but the exact mechanism of GRB2-SOS1 complex formation and SOS1 activation has yet remained obscure. Here, a new allosteric mechanism for the GRB2 regulation is described as a prerequisite for the modulation of SOS1 activation. This regulatory mechanism comprises a series of intramolecular interactions which are potentiated by GRB2 interaction with upstream ligands.<b>Abbreviations:</b> GRB2, growth factor receptor-bound protein 2; SOS1, son of sevenless 1; RAS, Rat Sarcoma; GEF, guanine nucleotide exchange factor; GAP, GTPase-activating protein; HER2, human epidermal growth factor receptor; SH3, SRC Homology 3; SH2, SRC Homology 2; PRD, proline-rich domain; PRM, proline-rich motif; PRP, proline-rich peptide; RTK, receptor tyrosine kinases.</p>","PeriodicalId":22139,"journal":{"name":"Small GTPases","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9225496/pdf/KSGT_13_2089001.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9990818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}