Semi‐Riemannian Geometry最新文献

筛选
英文 中文
Fields on Smooth Manifolds 光滑流形上的域
Semi‐Riemannian Geometry Pub Date : 2019-09-02 DOI: 10.1002/9781119517566.ch15
{"title":"Fields on Smooth Manifolds","authors":"","doi":"10.1002/9781119517566.ch15","DOIUrl":"https://doi.org/10.1002/9781119517566.ch15","url":null,"abstract":"","PeriodicalId":220953,"journal":{"name":"Semi‐Riemannian Geometry","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130583452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Index 指数
Semi‐Riemannian Geometry Pub Date : 2019-09-02 DOI: 10.1002/9781119517566.index
{"title":"Index","authors":"","doi":"10.1002/9781119517566.index","DOIUrl":"https://doi.org/10.1002/9781119517566.index","url":null,"abstract":"","PeriodicalId":220953,"journal":{"name":"Semi‐Riemannian Geometry","volume":"3045 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127465177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Smooth Manifolds with Boundary 具有边界的光滑流形
Semi‐Riemannian Geometry Pub Date : 2019-09-02 DOI: 10.1002/9781119517566.ch17
{"title":"Smooth Manifolds with Boundary","authors":"","doi":"10.1002/9781119517566.ch17","DOIUrl":"https://doi.org/10.1002/9781119517566.ch17","url":null,"abstract":"","PeriodicalId":220953,"journal":{"name":"Semi‐Riemannian Geometry","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127855551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Matrices and Determinants 矩阵和行列式
Semi‐Riemannian Geometry Pub Date : 2019-09-02 DOI: 10.1002/9781119517566.ch2
{"title":"Matrices and Determinants","authors":"","doi":"10.1002/9781119517566.ch2","DOIUrl":"https://doi.org/10.1002/9781119517566.ch2","url":null,"abstract":"","PeriodicalId":220953,"journal":{"name":"Semi‐Riemannian Geometry","volume":"66 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122959663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Appendix B Abstract Algebra 附录B抽象代数
Semi‐Riemannian Geometry Pub Date : 2019-09-02 DOI: 10.1002/9781119517566.app2
{"title":"Appendix B Abstract Algebra","authors":"","doi":"10.1002/9781119517566.app2","DOIUrl":"https://doi.org/10.1002/9781119517566.app2","url":null,"abstract":"","PeriodicalId":220953,"journal":{"name":"Semi‐Riemannian Geometry","volume":"71 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124842847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bilinear Functions 双线性函数
Semi‐Riemannian Geometry Pub Date : 2019-09-02 DOI: 10.1002/9781119517566.ch3
{"title":"Bilinear Functions","authors":"","doi":"10.1002/9781119517566.ch3","DOIUrl":"https://doi.org/10.1002/9781119517566.ch3","url":null,"abstract":"","PeriodicalId":220953,"journal":{"name":"Semi‐Riemannian Geometry","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124974899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Smooth Manifolds with a Connection 带连接的光滑流形
Semi‐Riemannian Geometry Pub Date : 2019-09-02 DOI: 10.1002/9781119517566.ch18
{"title":"Smooth Manifolds with a Connection","authors":"","doi":"10.1002/9781119517566.ch18","DOIUrl":"https://doi.org/10.1002/9781119517566.ch18","url":null,"abstract":"","PeriodicalId":220953,"journal":{"name":"Semi‐Riemannian Geometry","volume":"200 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121891132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differentiation and Integration on Smooth Manifolds 光滑流形的微分与积分
Semi‐Riemannian Geometry Pub Date : 2019-09-02 DOI: 10.1002/9781119517566.ch16
{"title":"Differentiation and Integration on Smooth Manifolds","authors":"","doi":"10.1002/9781119517566.ch16","DOIUrl":"https://doi.org/10.1002/9781119517566.ch16","url":null,"abstract":"","PeriodicalId":220953,"journal":{"name":"Semi‐Riemannian Geometry","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129832567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Examples of Regular Surfaces 规则曲面的例子
Semi‐Riemannian Geometry Pub Date : 2019-09-02 DOI: 10.1002/9781119517566.ch13
{"title":"Examples of Regular Surfaces","authors":"","doi":"10.1002/9781119517566.ch13","DOIUrl":"https://doi.org/10.1002/9781119517566.ch13","url":null,"abstract":"","PeriodicalId":220953,"journal":{"name":"Semi‐Riemannian Geometry","volume":"129 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132674847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applications to Physics 物理应用
Semi‐Riemannian Geometry Pub Date : 2019-09-02 DOI: 10.1002/9781119517566.ch22
Liming Pang
{"title":"Applications to Physics","authors":"Liming Pang","doi":"10.1002/9781119517566.ch22","DOIUrl":"https://doi.org/10.1002/9781119517566.ch22","url":null,"abstract":"i.e., Work = Force × Distance. And the unit for work is Joule (denoted by J). 1 J = 1 N × 1 m. But in reality, force is not always constant, but a function in terms of position, say F = f(x). In such circumference, we can also define the work using integration: Divide the interval [a, b] into n pieces of length ∆x = b−a n , and in each interval, we take a point xi ∈ [xi−1, xi]. When ∆x is small, the force is almost constantly equal to f(xi ), so an approximation of the actual work is: n ∑","PeriodicalId":220953,"journal":{"name":"Semi‐Riemannian Geometry","volume":"52 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130996747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信