物理应用

Liming Pang
{"title":"物理应用","authors":"Liming Pang","doi":"10.1002/9781119517566.ch22","DOIUrl":null,"url":null,"abstract":"i.e., Work = Force × Distance. And the unit for work is Joule (denoted by J). 1 J = 1 N × 1 m. But in reality, force is not always constant, but a function in terms of position, say F = f(x). In such circumference, we can also define the work using integration: Divide the interval [a, b] into n pieces of length ∆x = b−a n , and in each interval, we take a point xi ∈ [xi−1, xi]. When ∆x is small, the force is almost constantly equal to f(xi ), so an approximation of the actual work is: n ∑","PeriodicalId":220953,"journal":{"name":"Semi‐Riemannian Geometry","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applications to Physics\",\"authors\":\"Liming Pang\",\"doi\":\"10.1002/9781119517566.ch22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"i.e., Work = Force × Distance. And the unit for work is Joule (denoted by J). 1 J = 1 N × 1 m. But in reality, force is not always constant, but a function in terms of position, say F = f(x). In such circumference, we can also define the work using integration: Divide the interval [a, b] into n pieces of length ∆x = b−a n , and in each interval, we take a point xi ∈ [xi−1, xi]. When ∆x is small, the force is almost constantly equal to f(xi ), so an approximation of the actual work is: n ∑\",\"PeriodicalId\":220953,\"journal\":{\"name\":\"Semi‐Riemannian Geometry\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semi‐Riemannian Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/9781119517566.ch22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semi‐Riemannian Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9781119517566.ch22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

即功=力×距离。功的单位是焦耳(用J表示)1j = 1n × 1m。但实际上,力并不总是恒定的,而是一个关于位置的函数,比如F = F (x)在这样的周长中,我们也可以用积分法来定义功:将区间[a, b]划分为n个长度为∆x = b−a n的区间,在每个区间中取点xi∈[xi−1,xi]。当∆x很小时,力几乎总是等于f(xi),所以实际做功的近似值为:n∑
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applications to Physics
i.e., Work = Force × Distance. And the unit for work is Joule (denoted by J). 1 J = 1 N × 1 m. But in reality, force is not always constant, but a function in terms of position, say F = f(x). In such circumference, we can also define the work using integration: Divide the interval [a, b] into n pieces of length ∆x = b−a n , and in each interval, we take a point xi ∈ [xi−1, xi]. When ∆x is small, the force is almost constantly equal to f(xi ), so an approximation of the actual work is: n ∑
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信