Guangming Lu, Kimura Hideo, Xiangdong Ding, Zhijun Xu, R. Chu, G. Nataf, E. Salje
{"title":"Influence of kinks on the interaction energy between ferroelastic domain walls in membranes and thin films","authors":"Guangming Lu, Kimura Hideo, Xiangdong Ding, Zhijun Xu, R. Chu, G. Nataf, E. Salje","doi":"10.20517/microstructures.2023.28","DOIUrl":"https://doi.org/10.20517/microstructures.2023.28","url":null,"abstract":"In thin samples, such as membranes, kinks inside ferroelastic domain walls interact through “dipolar” interactions following a 1/d 2 decay, where d is the distance between the walls. Simultaneously, the samples relax by bending. Bending is not possible in thick samples or can be suppressed in thin films deposited on a rigid substrate. In these cases, wall-wall interactions decay as 1/d , as monopoles would do. In free-standing samples, we show a wide crossover regime between “dipolar” 1/d 2 interactions and “monopolar” 1/d interactions. The surfaces of all samples show characteristic relaxation patterns near the kink, which consists of ridges and valleys. We identify the sample bending as the relevant image force that emanates from kinks inside walls in thin samples. When samples are prevented from bending by being attached to a substrate, the dipolar force is replaced by “monopolar” forces, even in thin samples. These results are important for transmission electron microscopy imaging, where the typical sample size is in the dipolar range while it is in the monopolar range for the bulk.","PeriodicalId":22044,"journal":{"name":"Superlattices and Microstructures","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86660915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Meng Sun, Xiaokang Wang, Fei Gao, Mingming Xu, Weidong Fan, Ben Xu, Daofeng Sun
{"title":"Synthesis strategies of metal-organic frameworks for CO2 capture","authors":"Meng Sun, Xiaokang Wang, Fei Gao, Mingming Xu, Weidong Fan, Ben Xu, Daofeng Sun","doi":"10.20517/microstructures.2023.32","DOIUrl":"https://doi.org/10.20517/microstructures.2023.32","url":null,"abstract":"The high consumption of fossil energy has led to increasing concentrations of carbon dioxide (CO2) in the atmosphere, making carbon capture and separation a research hotspot in this century. As novel porous materials, metal-organic frameworks (MOFs) are widely used for CO2 capture due to their unique structures and tunable properties. Currently, several relatively mature strategies have been applied to synthesize MOFs for CO2 capture. Herein, we investigate strategies for tuning the pore windows, pore sizes, open metal sites, and post-synthesis or pre-synthesis modifications of MOFs from the perspective of CO2 capture performance. Furthermore, we summarize the relevant CO2 capture technologies and research advances and describe the application of different strategies in the synthesis of CO2 capture-oriented MOFs.","PeriodicalId":22044,"journal":{"name":"Superlattices and Microstructures","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74583607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Elastic properties and Ion-mediated domain switching of self-assembled heterostructures CuInP2S6-In4/3P2S6","authors":"","doi":"10.20517/microstructures.2022.39","DOIUrl":"https://doi.org/10.20517/microstructures.2022.39","url":null,"abstract":"","PeriodicalId":22044,"journal":{"name":"Superlattices and Microstructures","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90224676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu Teng, Jing Li, Jian Yao, Lixing Kang, Qingwen Li, Prof. Lixing Kang, Prof. Qingwen Li
{"title":"Filled carbon-nanotube heterostructures: from synthesis to application","authors":"Yu Teng, Jing Li, Jian Yao, Lixing Kang, Qingwen Li, Prof. Lixing Kang, Prof. Qingwen Li","doi":"10.20517/microstructures.2023.07","DOIUrl":"https://doi.org/10.20517/microstructures.2023.07","url":null,"abstract":"Filled carbon-nanotube heterostructures: from synthesis to application","PeriodicalId":22044,"journal":{"name":"Superlattices and Microstructures","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90950901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Formation of strong and ductile FeNiCoCrB network-structured high-entropy alloys by fluxing","authors":"","doi":"10.20517/microstructures.2022.47","DOIUrl":"https://doi.org/10.20517/microstructures.2022.47","url":null,"abstract":"","PeriodicalId":22044,"journal":{"name":"Superlattices and Microstructures","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85223410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Trilayer PVDF nanocomposites with significantly enhanced energy density and energy efficiency using 0.55Bi0.5Na0.5TiO3-0.45(Sr0.7Bi0.2)TiO3 nanofibers","authors":"","doi":"10.20517/microstructures.2022.31","DOIUrl":"https://doi.org/10.20517/microstructures.2022.31","url":null,"abstract":"","PeriodicalId":22044,"journal":{"name":"Superlattices and Microstructures","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80477535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Commentary on “Heterogenous nature of enhanced piezoelectricity in relaxor-ferroelectric crystals”","authors":"","doi":"10.20517/microstructures.2023.10","DOIUrl":"https://doi.org/10.20517/microstructures.2023.10","url":null,"abstract":"","PeriodicalId":22044,"journal":{"name":"Superlattices and Microstructures","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91105549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Menghao Liu, C. Du, Zhiyong Liu, Li Wang, Rui Zhong, Xiaojie Cheng, Jiawei Ao, Teng Duan, Yuetong Zhu, Xiaogang Li
{"title":"A review on pitting corrosion and environmentally assisted cracking on duplex stainless steel","authors":"Menghao Liu, C. Du, Zhiyong Liu, Li Wang, Rui Zhong, Xiaojie Cheng, Jiawei Ao, Teng Duan, Yuetong Zhu, Xiaogang Li","doi":"10.20517/microstructures.2023.02","DOIUrl":"https://doi.org/10.20517/microstructures.2023.02","url":null,"abstract":"Duplex stainless steel is widely used in the petrochemical, maritime, and food industries. However, duplex stainless steel has the problem of corrosion failures during use. This topic has not been comprehensively and academically reviewed. These factors motivate the authors to review the developments in the corrosion research of duplex stainless steel. The review found that the primary reasons for the failure of duplex stainless steels are pitting corrosion and chloride-induced stress corrosion cracking. After being submerged in water, the evolution of the passive film on the duplex stainless steel can be loosely classified into three stages: nucleation, rapid growth, and stable growth stages. Instead of dramatic rupture, the passive film rupture process is a continuous metal oxidation process. Environmental factors scarcely affect the double-layer structure of the passive film, but they affect the film's overall thickness, oxide ratio, and defect concentration. The six mechanisms of alloying elements on pitting corrosion are summarized as stabilization, ineffective, soluble precipitates, soluble inclusions, insoluble inclusions, and wrapping mechanisms. In environments containing chlorides, ferrite undergoes pitting corrosion more easily than austenite. However, the pitting corrosion resistance reverses when sufficiently large deformation is used. The mechanisms of pitting corrosion induced by precipitates include the Cr-depletion, microgalvanic, and high-stress field theories. Chloride-induced cracks always initiate in the corrosion pits and blunt when encountering austenite. Phase boundaries are both strong hydrogen traps and rapid hydrogen diffusion pathways during hydrogen-induced stress cracking.","PeriodicalId":22044,"journal":{"name":"Superlattices and Microstructures","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78602526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The effect of chromium content on the corrosion behavior of ultrafine-grained CrxMnFeCoNi high-entropy alloys in sulfuric acid solution","authors":"","doi":"10.20517/microstructures.2022.36","DOIUrl":"https://doi.org/10.20517/microstructures.2022.36","url":null,"abstract":"","PeriodicalId":22044,"journal":{"name":"Superlattices and Microstructures","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75106868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent progress on alloy-based anode materials for potassium-ion batteries","authors":"","doi":"10.20517/microstructures.2022.30","DOIUrl":"https://doi.org/10.20517/microstructures.2022.30","url":null,"abstract":"","PeriodicalId":22044,"journal":{"name":"Superlattices and Microstructures","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87532136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}