Surface & Coatings Technology最新文献

筛选
英文 中文
Eco-friendly fabrication of robust superhydrophobic coating with excellent anti-corrosion and anti-icing properties through using submillimeter particles as protective structure 利用亚毫米微粒作为保护结构,以环保方式制造出具有优异防腐蚀和防结冰性能的坚固超疏水涂层
IF 5.3 2区 材料科学
Surface & Coatings Technology Pub Date : 2024-10-30 DOI: 10.1016/j.surfcoat.2024.131494
{"title":"Eco-friendly fabrication of robust superhydrophobic coating with excellent anti-corrosion and anti-icing properties through using submillimeter particles as protective structure","authors":"","doi":"10.1016/j.surfcoat.2024.131494","DOIUrl":"10.1016/j.surfcoat.2024.131494","url":null,"abstract":"<div><div>Constructing superhydrophobic surfaces is a promising method for enhancing the anti-corrosion and anti-icing properties of metal materials. However, it is still a challenge to obtain robust superhydrophobic surfaces on metal substrate through simple and environmentally friendly methods. In this study, a robust superhydrophobic coating was fabricated on an aluminum substrate using a simple two-step method, i.e., sprinkling B<sub>4</sub>C submillimeter particles onto the aluminum substrate coated with epoxy resin (EP) to construct submillitmeter protective structure, and then dipping a mixture of EP/polydimethylsiloxane (PDMS)/hydrophobic SiO<sub>2</sub> nanoparticles to impart superhydrophobicity. The mechanical robustness of the coating was evaluated using sandpaper abrasion, 3 M tape peeling, and sand impact tests. The results displayed that the coating maintained its superhydrophobicity after 16 m of sandpaper abrasion (3.2 kPa), 60 cycles of 3 M tape peeling, and 2500 g of sand impact, indicating the good resistance of the coating to different mechanical damages. The anti-corrosion property of the coating was measured by the electrochemistry tests, and the results confirmed that the coating possessed excellent anti-corrosion property with 34.06 times lower corrosion current density than the bare aluminum. The anti-icing property of the coating was assessed by freezing delayed time and de-icing force tests, and the results demonstrated that coating had outstanding anti-icing property with 730 s longer freezing delay time and 3–4-folds lower de-icing force than the bare aluminum. It can be excepted that the coating has a promising prospect in practical application due to its simple fabrication, good anti-corrosion and anti-icing properties and remarkable mechanical robustness.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating by temperature field-assisted laser cladding 温度场辅助激光熔覆 CrMnFeCoNi 高熵合金镀层的微观结构和腐蚀特性
IF 5.3 2区 材料科学
Surface & Coatings Technology Pub Date : 2024-10-30 DOI: 10.1016/j.surfcoat.2024.131473
{"title":"Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating by temperature field-assisted laser cladding","authors":"","doi":"10.1016/j.surfcoat.2024.131473","DOIUrl":"10.1016/j.surfcoat.2024.131473","url":null,"abstract":"<div><div>The CrMnFeCoNi high entropy alloy coatings were prepared on the surface of Q345 steel using a temperature field-assisted laser cladding process, and the effects of the applied temperature field on the cladding coatings were studied. The microstructures and corrosion morphologies of the coatings were observed, and the elemental distribution, hardness, effective elastic modulus, electrochemical corrosion performance, and corrosion products of different coatings were analyzed. The results show that the porosity of the HEA coatings prepared with a temperature field is reduced to below 50 % of the initial level. The microstructure of the coating changed, with the nanoindentation hardness of the coating increasing by up to 0.55 GPa, enhancing the mechanical properties. Among all the coatings, the coating prepared at 250 °C temperature field exhibited the best corrosion resistance, with corrosion potential and current density of −0.27 V and 0.15 μA/cm<sup>2</sup>, respectively, improving the corrosion potential by 0.1 V and reducing the current density by 1.08 μA/cm<sup>2</sup> compared to the sample prepared at room temperature. After incorporating the temperature field, the stability of the passive film on the coating during corrosion improved, and the nucleation rate of pitting decreased. Therefore, incorporating an appropriate temperature field during laser cladding can effectively enhance the overall performance of the CrMnFeCoNi HEA coating.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of corrosion resistance offered by the Fe-based clad layer under salt spray and electrochemical workstations 盐雾和电化学工作站条件下铁基覆层的耐腐蚀性能研究
IF 5.3 2区 材料科学
Surface & Coatings Technology Pub Date : 2024-10-30 DOI: 10.1016/j.surfcoat.2024.131482
{"title":"Investigation of corrosion resistance offered by the Fe-based clad layer under salt spray and electrochemical workstations","authors":"","doi":"10.1016/j.surfcoat.2024.131482","DOIUrl":"10.1016/j.surfcoat.2024.131482","url":null,"abstract":"<div><div>The present work aims to evaluate the electrochemical characteristics of the Fe–based alloy coating formed on the 27SiMn steel substrate under neutral salt spray and 3.5 wt% NaCl environments. By adopting the high-speed laser cladding technique, the Fe-based clad layer was fabricated to perform microstructural and electrochemical characterizations. The microstructure and phase of the coating were analyzed using a scanning electron microscope (SEM), electron backscatter diffraction (EBSD) and X-ray diffraction (XRD), and its corrosion performance was also discussed using the salt spray corrosion chamber and the electrochemical workstation. The results show that the microstructure of the coating surface contains equiaxed crystals and long dendritic crystals which arise due to the higher solidification rate after the cladding process. The Fe–based coating was rich in Fe<img>Cr phase throughout its microstructure without the formation of the intermetallic compounds. Compared to the substrate, the corroded surface of the coating tends to be compact containing a few corrosion pits after different corrosion times, which is attributed to the formation of Cr oxide on it. The electrochemical tests on the potentiodynamic polarization curve (PPC) and electrochemical impedance spectrum (EIS) indicate that the corrosion resistance of the coating is superior to the substrate, presenting a higher corrosion potential (−0.298 V), lower passive current density (1.36 × 10<sup>−6</sup> A•cm<sup>2</sup>), and higher charge transfer resistance (8.23 × 10<sup>6</sup> Ω<strong>·</strong>cm<sup>2</sup>). Additionally, the corrosion mechanism of coating in salt spray and electrochemical tests is the local pitting corrosion due to the autocatalytic effect on the localized region, which facilitates Cl<sup>−</sup> ions penetrating the coating and leads to the dissolution of Fe and Cr oxides.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phase composition of sputter deposited tungsten thin films 溅射沉积钨薄膜的相组成
IF 5.3 2区 材料科学
Surface & Coatings Technology Pub Date : 2024-10-30 DOI: 10.1016/j.surfcoat.2024.131447
{"title":"Phase composition of sputter deposited tungsten thin films","authors":"","doi":"10.1016/j.surfcoat.2024.131447","DOIUrl":"10.1016/j.surfcoat.2024.131447","url":null,"abstract":"<div><div>Sputter deposited tungsten thin films are studied by X-ray diffraction. Two phases can be identified: <span><math><mi>α</mi></math></span>-W and <span><math><mi>β</mi></math></span>-W based on the observed (110), and (200) and (210) Bragg reflections, respectively. With increasing film thickness (50 to 200 nm), the phase composition shifts from <span><math><mi>β</mi></math></span>-W towards <span><math><mi>α</mi></math></span>-W. No influence of the base pressure (3 × 10<sup>−3</sup>–3 × 10<sup>−5</sup> Pa) on the phase composition is observed. Also the influence of the argon pressure (0.3 to 0.7 Pa) is rather weak. The strongest shift towards <span><math><mi>α</mi></math></span>-W composed thin films is obtained by increasing the discharge power (50 to 250 W). This trend is further studied by energy flux measurements using a calorimetric probe. These measurements rule out a strong change of the substrate temperature, and an impact of the energy flux scaled by the deposition rate (total energy per deposited atom). Test particle Monte Carlo simulations reveal the importance of the momentum of the reflected argon neutrals on the phase composition. The maximum energy of these species is mainly defined by the discharge voltage, and is higher than the directional dependent displacement energy of W. Despite the significant correlation between phase composition and the number of displacement per deposited atom, there is a strong scatter of the phase composition. As the deposition conditions were varied in random way, changes of the target erosion profile, and the changing discharge voltage over each series are probably partially responsible for the observed scatter. This scatter is also enhanced by the long term changes in the phase composition towards the more thermodynamic stable <span><math><mi>α</mi></math></span>-W phase.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of laser remelting on the microstructures and properties of NiCoCrAlY-based coatings prepared by high-speed air fuel supersonic flame (HVAF) 激光重熔对高速空气燃料超音速火焰 (HVAF) 制备的镍钴铬铝基合金涂层微观结构和性能的影响
IF 5.3 2区 材料科学
Surface & Coatings Technology Pub Date : 2024-10-30 DOI: 10.1016/j.surfcoat.2024.131511
{"title":"Effect of laser remelting on the microstructures and properties of NiCoCrAlY-based coatings prepared by high-speed air fuel supersonic flame (HVAF)","authors":"","doi":"10.1016/j.surfcoat.2024.131511","DOIUrl":"10.1016/j.surfcoat.2024.131511","url":null,"abstract":"<div><div>In order to improve the oxidation resistance of the coating, laser remelting technology was used to remelt the HVAF multi-component modified coating. The influence of laser remelting technology on the phase state, microstructure characteristics, and isothermal oxidation behavior of coatings was studied. The experimental results indicate that a coating with complete morphology and no defects was obtained on the surface. There is a significant amount of metallurgical bonding and partial mechanical interlocking between the remelted layer and the substrate. The remelted layer is mainly composed of β-NiAl phase, accompanied by a small amount of γ′ phase and oxide phase. The microhardness test results show that the average hardness of the remelted layer is 1.1–1.42 times that of the prepared coating, and the bonding strength has increased by 23 %. After 100 h of high-temperature oxidation, the oxidation rate of the 4N3T4H remelted layer is the lowest, at 1.5 × 10<sup>−15</sup> cm<sup>2</sup>/s, which is one order of magnitude lower than that of the as-sprayed coating. This is because after laser remelting, the remelted layer has the inherent hysteresis diffusion effect of HEA, which can improve the high-temperature oxidation resistance of the remelted layer and basically eliminate many pores and cracks contained in the HVAF coating. The coating density is significantly increased, which is conducive to hindering the diffusion of oxygen. Meanwhile, the oxide of HVAF coating mainly accumulates at pores and cracks, and there is no or late formation of uniform and dense oxide film on the surface. The surface of the remelted coating after oxidation forms a relatively uniform and dense oxide film, providing more effective protection for the substrate.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing durability and oil-water separation efficiency with plasma-treated graphene oxide coated mesh 利用经等离子处理的氧化石墨烯涂层滤网提高耐久性和油水分离效率
IF 5.3 2区 材料科学
Surface & Coatings Technology Pub Date : 2024-10-30 DOI: 10.1016/j.surfcoat.2024.131495
{"title":"Enhancing durability and oil-water separation efficiency with plasma-treated graphene oxide coated mesh","authors":"","doi":"10.1016/j.surfcoat.2024.131495","DOIUrl":"10.1016/j.surfcoat.2024.131495","url":null,"abstract":"<div><div>In recent years, there has been a surge in interest surrounding the fabrication and utilization of superhydrophobic and superhydrophilic surfaces, driven by their exceptional functionalities and properties. Graphene Oxide (GO) has inherent hydrophilicity and underwater superoleophobicity, which has made this material a particularly capable candidate for oil-water separation. Addressing the persistent challenge of efficient oil-water separation in industrial contexts, this study presents the fabrication of a GO-coated stainless steel mesh via a facile dip coating method augmented by an intermediate two-step O<sub>2</sub> plasma treatment. The coated meshes were tested with various oil and water mixtures, including neutral, acidic, saline, and hot water, to find separation efficiency and recyclability. Notably, the meshes can achieve excellent separation efficiency of approximately 98.9 % and a superior flux of 11,464 L m<sup>−2</sup> h<sup>−1</sup> driven by gravity. This is a significant improvement over GO-coated meshes without O<sub>2</sub> plasma treatment. Moreover, the plasma-treated meshes exhibit robust long-term durability and chemical stability, maintaining high underwater oil contact angles ≥119° even after extended immersion in diverse pH mediums and salt solutions for 150 days. This work showcases the practical viability of plasma-treated GO-coated meshes for oil-water separation applications and establishes a framework for systematically evaluating their long-term performance in harsh immersion conditions.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The influence of nitrogen content on the microstructure and properties of W-Ta-Cr-V-N refractory high-entropy nitrides 氮含量对 W-Ta-Cr-V-N 高熵难熔氮化物微观结构和性能的影响
IF 5.3 2区 材料科学
Surface & Coatings Technology Pub Date : 2024-10-30 DOI: 10.1016/j.surfcoat.2024.131475
{"title":"The influence of nitrogen content on the microstructure and properties of W-Ta-Cr-V-N refractory high-entropy nitrides","authors":"","doi":"10.1016/j.surfcoat.2024.131475","DOIUrl":"10.1016/j.surfcoat.2024.131475","url":null,"abstract":"<div><div>To enhance the mechanical performance and corrosion resistance of refractory high-entropy alloys (RHEAs) and to identify materials better suited for severe high-temperature and corrosive environments, this study utilized a double glow plasma surface alloying technique to fabricate a W-Ta-Cr-V-N refractory high-entropy nitride coating on a W substrate. The microstructure and phase structure of the samples were characterized using a scanning electron microscope and X-ray diffractometer. The mechanical properties of the samples were evaluated through microhardness testing, while their corrosion performance was assessed by potentiodynamic polarization and electrochemical impedance spectroscopy measurements. The study investigated the effects of different nitrogen contents on the microstructure, mechanical properties, and corrosion resistance of the BCC-structured W-Ta-Cr-V alloy in the past tense. The study found that the doping of an appropriate amount of nitrogen can lead to the formation of FCC and HCP structured nitrides. As the nitrogen content increases, there is a significant change in the preferred orientation of the coating. When the nitrogen content is 16.6 at.%, the distribution of the nitrides is uneven, resulting in increased surface undulations and roughness. Conversely, when the nitrogen content is elevated to 48.1 at.%, the clustering of surface nitride particles becomes more pronounced, leading to a decrease in the coating density. The thickness of the nitride coatings is around 10 μm, with a slight decrease in thickness as the nitrogen content increases. The hardness of the coatings is significantly superior to that of the W-Ta-Cr-V alloy films, reaching up to 3465 HV<sub>0.25</sub> in the highest instance. The introduction of 31.4 at.% nitrogen results in the densest coating, effectively enhancing the corrosion resistance of the refractory high-entropy alloy. Therefore, the doping of an appropriate amount of nitrogen can alter the microstructure of the refractory high-entropy alloy, improve its mechanical properties, and enhance its chemical stability.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facile fabrication of TiN coatings to enhance the corrosion resistance of stainless steel 轻松制作 TiN 涂层,提高不锈钢的耐腐蚀性能
IF 5.3 2区 材料科学
Surface & Coatings Technology Pub Date : 2024-10-30 DOI: 10.1016/j.surfcoat.2024.131450
{"title":"Facile fabrication of TiN coatings to enhance the corrosion resistance of stainless steel","authors":"","doi":"10.1016/j.surfcoat.2024.131450","DOIUrl":"10.1016/j.surfcoat.2024.131450","url":null,"abstract":"<div><div>Stainless steel, widely used for its excellent mechanical properties, suffers from low surface hardness that reduces its corrosion resistance. Herein, a straightforward ultrasonic shot peening technique was employed to fabricate a TiN coating (USG) that is well-bonded to the substrate. Corrosion tests demonstrated a significant decrease in corrosion current density (i<sub>corr</sub>) from 6.09 × 10<sup>−7</sup> A·cm<sup>−2</sup> to 7.40 × 10<sup>−9</sup> A·cm<sup>−2</sup>, and the corrosion rate decreased from 299.49 mm/year to 121.67 mm/year. The high-energy processing chamber facilitated rapid formation of a chemically-bonded TiN layer. The chemical inertness of TiN in environments containing water and chloride ions helps to avoid corrosive reactions, thereby enhancing the corrosion resistance of the USG samples. Further AIMD calculations reveal the corrosion-resistant mechanism of TiN at the atomic scale, showing strong chemical bonding between TiN and the substrate, forming a dense protective layer. Additionally, the chemical inertness of TiN in saline environments effectively prevents substrate corrosion. This work demonstrates a novel and effective approach for fabricating corrosion-resistant coatings on stainless steel surfaces.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microstructural and mechanical properties of TiN/CrN and TiSiN/CrN multilayer coatings deposited in an industrial-scale HiPIMS system: Effect of the Si incorporation 在工业规模的 HiPIMS 系统中沉积的 TiN/CrN 和 TiSiN/CrN 多层涂层的微观结构和机械性能:硅掺入量的影响
IF 5.3 2区 材料科学
Surface & Coatings Technology Pub Date : 2024-10-30 DOI: 10.1016/j.surfcoat.2024.131461
{"title":"Microstructural and mechanical properties of TiN/CrN and TiSiN/CrN multilayer coatings deposited in an industrial-scale HiPIMS system: Effect of the Si incorporation","authors":"","doi":"10.1016/j.surfcoat.2024.131461","DOIUrl":"10.1016/j.surfcoat.2024.131461","url":null,"abstract":"<div><div>Surface engineering through the deposition of advanced coatings, particularly multilayer coatings has gained significant interest for enhancing the performance of coated parts. The incorporation of Si into TiN coatings has shown promise for improving hardness, oxidation resistance, and thermal stability, while high-power impulse magnetron sputtering (HiPIMS) has emerged as a technique to deposit coatings with exceptional properties. However, TiN/CrN and TiSiN/CrN coatings deposited by HiPIMS remain relatively unexplored. In this study, different TiN/CrN and TiSiN/CrN multilayer coatings with different bilayer periods from 5 to 85 nm were deposited using an industrial-scale HiPIMS reactor, and their microstructure and mechanical properties were investigated using advanced characterization techniques. Results revealed successful deposition of smooth and compact coatings with controlled bilayer periods. X-ray diffraction analysis showed separate crystalline phases for coatings with high bilayer periods, while those with smaller bilayer periods exhibited peak-overlapping and superlattice overtones, especially for the TiN/CrN coatings. Epitaxial grain growth was confirmed by high-resolution transmission electron microscopy (HRTEM). HRTEM and electron energy-loss spectroscopy measurements confirmed Si incorporation into the TiN crystal lattice of TiSiN/CrN coatings reducing the crystallinity, especially for coatings with smaller bilayer periods. Nanoindentation tests revealed that coatings with a bilayer period of 15–20 nm displayed the highest hardness values regardless of the composition. The mechanical properties of the TiSiN/CrN coatings showed no improvement over those of the TiN/CrN coatings, attributed to the Si induced amorphization of the Ti(<em>Si</em>)N phase and the absence of SiN<sub>x</sub> phase segregation within the TiN nanocrystals in these coatings. These findings provide valuable insights into the microstructure and mechanical properties of TiN/CrN and TiSiN/CrN multilayer coatings deposited by HiPIMS in an industrial scale reactor, paving the way for their application in various industrial sectors.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability-enhanced (Cu-, Zn-)MOFs via (Cu, Zn)S composite strategy: A promising approach for oil-water separation 通过(Cu, Zn)S复合策略增强(Cu, Zn-)MOFs 的稳定性:有望实现油水分离的方法
IF 5.3 2区 材料科学
Surface & Coatings Technology Pub Date : 2024-10-30 DOI: 10.1016/j.surfcoat.2024.131316
{"title":"Stability-enhanced (Cu-, Zn-)MOFs via (Cu, Zn)S composite strategy: A promising approach for oil-water separation","authors":"","doi":"10.1016/j.surfcoat.2024.131316","DOIUrl":"10.1016/j.surfcoat.2024.131316","url":null,"abstract":"<div><div>The application of metal-organic frameworks (MOFs) in the field of oil-water separation is developing rapidly, but the challenges of poor water stability, poor scalability and durability still limit its practical application. In this study, two environmentally friendly and non-toxic superhydrophobic (Cu, Zn)S/(Cu-, Zn-)MOFs@stearic acid (CuS/Cu-MOFs@SA and ZnS/Zn-MOFs@SA) coatings were successfully prepared by hydrothermal method combined with dip coating method, with a water contact angle (WCA) of &gt;165°. Through the synergistic effect with stearic acid (SA), the (Cu-, Zn-)MOFs coating composited with CuS and ZnS exhibits excellent durability in extreme environments. This synergistic effect significantly improves the mechanical stability and durability of the coating, allowing it to maintain a WCA of &gt;155° after friction, kneading, tape stripping and ultrasonic treatment. However, CuS/Cu-MOFs@SA coating is significantly superior to ZnS/Zn-MOFs@SA coating in terms of chemical stability (acid-base-salt environment) and self-cleaning ability due to the different ligands used in the preparation process and the formation of particle structure. Significantly improved its durability and reliability in oil-water separation. The separation efficiency of the coating is as high as 98.7 %, and it remains above 97.8 % after 12 times of repeated use. This study provides a new strategy and important reference for the development of superhydrophobic MOFs coatings and oil-water separation materials with high stability, wear resistance and corrosion resistance.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142178099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信