Stem Cell Research & Therapy最新文献

筛选
英文 中文
Transplanted deep-layer cortical neuroblasts integrate into host neural circuits and alleviate motor defects in hypoxic-ischemic encephalopathy injured mice. 移植的深层皮质神经母细胞与宿主神经回路整合,缓解缺氧缺血性脑病损伤小鼠的运动缺陷。
IF 7.1 2区 医学
Stem Cell Research & Therapy Pub Date : 2024-11-13 DOI: 10.1186/s13287-024-04049-9
Mengnan Wu, Yuan Xu, Xiaoli Ji, Yingying Zhou, Yuan Li, Ban Feng, Qian Cheng, Hui He, Xingsheng Peng, Wenhao Zhou, Yuejun Chen, Man Xiong
{"title":"Transplanted deep-layer cortical neuroblasts integrate into host neural circuits and alleviate motor defects in hypoxic-ischemic encephalopathy injured mice.","authors":"Mengnan Wu, Yuan Xu, Xiaoli Ji, Yingying Zhou, Yuan Li, Ban Feng, Qian Cheng, Hui He, Xingsheng Peng, Wenhao Zhou, Yuejun Chen, Man Xiong","doi":"10.1186/s13287-024-04049-9","DOIUrl":"10.1186/s13287-024-04049-9","url":null,"abstract":"<p><strong>Background: </strong>Hypoxic-ischemic encephalopathy (HIE) is a major cause of neonatal disability and mortality. Although intensive studies and therapeutic approaches, there are limited restorative treatments till now. Human embryonic stem cell (hESCs)-derived cortical neural progenitors have shown great potentials in ischemic stroke in adult brain. However, it is unclear whether they are feasible for cortical reconstruction in immature brain with hypoxic-ischemic encephalopathy.</p><p><strong>Methods: </strong>By using embryonic body (EB) neural differentiation method combined with DAPT pre-treatment and quantitative cell transplantation, human cortical neuroblasts were obtained and transplanted into the cortex of hypoxic-ischemic injured brain with different dosages 2 weeks after surgery. Then, immunostaining, whole-cell patch clamp recordings and behavioral testing were applied to explore the graft survival and proliferation, fate commitment of cortical neuroblasts in vitro, neural circuit reconstruction and the therapeutic effects of cortical neuroblasts in HIE brain.</p><p><strong>Results: </strong>Transplantation of human cortical neural progenitor cells (hCNPs) in HIE-injured cortex exhibited long-term graft overgrowth. DAPT pre-treatment successfully synchronized hCNPs from different developmental stages (day 17, day 21, day 28) to deep layer cortical neuroblasts which survived well in HIE injured brain and greatly prevented graft overgrowth after transplantation. Importantly, the cortical neuroblasts primarily differentiated into deep-layer cortical neurons and extended long axons to their projection targets, such as the cortex, striatum, thalamus, and internal capsule in both ipsilateral and contralateral HIE-injured brain. The transplanted cortical neurons established synapses with host cortical neurons and exhibited spontaneous excitatory or inhibitory post-synaptic currents (sEPSCs or sIPSCs) five months post-transplantation. Rotarod and open field tests showed greatly improved animal behavior by intra-cortex transplantation of deep layer cortical neuroblasts in HIE injured brain.</p><p><strong>Conclusions: </strong>Transplanted hESCs derived cortical neuroblasts survive, project to endogenous targets, and integrate into host cortical neural circuits to rescue animal behavior in the HIE-injured brain without graft overgrowth, providing a novel and safe cell replacement strategy for the future treatment of HIE.</p>","PeriodicalId":21876,"journal":{"name":"Stem Cell Research & Therapy","volume":"15 1","pages":"422"},"PeriodicalIF":7.1,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558921/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142627484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Force-triggered density gradient sedimentation and cocktail enzyme digestion treatment for isolation of single dermal papilla cells from follicular unit extraction harvesting human hair follicles. 力触发密度梯度沉降和鸡尾酒酶消化处理,用于从毛囊单位提取收获的人类毛囊中分离单个真皮乳头细胞。
IF 7.1 2区 医学
Stem Cell Research & Therapy Pub Date : 2024-11-13 DOI: 10.1186/s13287-024-04026-2
Junfei Huang, Jian Chen, Haoyuan Li, Zhexiang Fan, Yuyang Gan, Yangpeng Chen, Lijuan Du
{"title":"Force-triggered density gradient sedimentation and cocktail enzyme digestion treatment for isolation of single dermal papilla cells from follicular unit extraction harvesting human hair follicles.","authors":"Junfei Huang, Jian Chen, Haoyuan Li, Zhexiang Fan, Yuyang Gan, Yangpeng Chen, Lijuan Du","doi":"10.1186/s13287-024-04026-2","DOIUrl":"10.1186/s13287-024-04026-2","url":null,"abstract":"<p><strong>Background: </strong>Hair follicles (HFs) are dynamic structures which are readily accessible within the skin that contain various pools of stem cells with broad regenerative potential, such as dermal papilla cells (DPCs), dermal sheath cells, and epithelial HF stem cells. DPCs act as signalling centres for HF regeneration. The current method for isolating human DPCs are inefficient. These methods struggle to obtain freshly isolated original DPCs and do not maintain the characteristics of DPCs effectively.</p><p><strong>Methods: </strong>In this study, two simple but more efficient methods were explored. Force-triggered density gradient sedimentation (FDGS) and cocktail enzyme digestion treatment (CEDT) were used to isolate purified DP spheres from human HFs, obtaining purified freshly isolated original DPCs from DP spheres. The expression profiles of isolated DPCs were tested, and gene expression of DPC-specific markers were analyzed using immunofluorescence staining, RT-qPCR and western blot.</p><p><strong>Results: </strong>The 10% Ficoll PM400 was determined as the optimal concentration for FDGS method. Primary DPCs, DSCs and HFSCs were isolated simultaneously using the FDGS and CEDT method. The expression profiles of fresh DPCs isolated using the FDGS and CEDT methods were similar to those of traditionally isolated DPCs. DP-specific markers were expressed at significantly higher levels in freshly isolated DPCs than in traditionally isolated DPCs.</p><p><strong>Conclusions: </strong>Compared to traditional methods, the presented laboratory protocols were able to isolate fresh DPCs with high efficiency, thereby improving their research potential.</p>","PeriodicalId":21876,"journal":{"name":"Stem Cell Research & Therapy","volume":"15 1","pages":"416"},"PeriodicalIF":7.1,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559101/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142628655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
N-CADHERIN+/CD168- subpopulation determines therapeutic variations of UC-MSCs for cardiac repair after myocardial infarction. N-CADHERIN+/CD168- 亚群决定了 UC-间充质干细胞在心肌梗塞后心脏修复中的治疗变化。
IF 7.1 2区 医学
Stem Cell Research & Therapy Pub Date : 2024-11-13 DOI: 10.1186/s13287-024-04032-4
Yukang Wu, Jianguo Li, Ke Feng, Ailing Tan, Yingying Gao, Wen Chen, Wenwen Jia, Xudong Guo, Jiuhong Kang
{"title":"N-CADHERIN<sup>+</sup>/CD168<sup>-</sup> subpopulation determines therapeutic variations of UC-MSCs for cardiac repair after myocardial infarction.","authors":"Yukang Wu, Jianguo Li, Ke Feng, Ailing Tan, Yingying Gao, Wen Chen, Wenwen Jia, Xudong Guo, Jiuhong Kang","doi":"10.1186/s13287-024-04032-4","DOIUrl":"10.1186/s13287-024-04032-4","url":null,"abstract":"<p><strong>Background: </strong>The efficiency of mesenchymal stem cells (MSCs) in treating myocardial infarction (MI) remains inconsistent, which limits their therapeutic applications. Therefore, exploring the mechanism for the inconsistent efficacy of MSCs and identification the criteria for screening MSCs are important for improving the efficiency of MSCs.</p><p><strong>Methods: </strong>Mouse model after MI was utilized to test the role of MSCs from different donors and the functional subpopulation in improving cardiac function. Heterogeneity of MSCs was identified using single-cell RNA sequencing (scRNA-seq) of MSC-GY. GSEA and Scissor analyses were used to find the functional subpopulations of MSCs that promote angiogenesis. The role of functional subpopulations in promoting angiogenesis was verified by detecting the secretory proteins, the ratio of N-CADHERIN<sup>+</sup>/CD168<sup>-</sup> subpopulations in MSCs, and the tube formation, migration, and proliferation of HUVECs after treatment with conditional medium (CM) derived from different MSCs.</p><p><strong>Results: </strong>We found that umbilical cord-derived MSCs (UC-MSCs) from different donors have varied therapeutic efficacy in MI mice and UC-MSCs with higher therapeutic effectiveness exhibited the most potent pro-angiogenic effects by secreting elevated levels of angiogenesis-related proteins, such as MYDGF, VEGFA, and FGF2. ScRNA-seq of 10,463 UC-MSCs revealed that the N-CADHERIN<sup>+</sup>/CD168<sup>-</sup> subpopulation was closely associated with pro-angiogenic effects, and the ratio of this cell subpopulation was positively correlated with the angiogenic potential of MSCs. We also found that the N-CADHERIN<sup>+</sup>/CD168<sup>-</sup> subpopulation was the functional subpopulation of MSCs in improving cardiac function of MI mice.</p><p><strong>Conclusions: </strong>Our study identified that the N-CADHERIN<sup>+</sup>/CD168<sup>-</sup> subpopulation was the functional subpopulation of MSCs in treating MI, which was essential for the development and utilization of MSCs in MI treatment.</p>","PeriodicalId":21876,"journal":{"name":"Stem Cell Research & Therapy","volume":"15 1","pages":"423"},"PeriodicalIF":7.1,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559175/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142628663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pretreatment with Notoginsenoside R1 enhances the efficacy of neonatal rat mesenchymal stem cell transplantation in model of myocardial infarction through regulating PI3K/Akt/FoxO1 signaling pathways. 通过调节PI3K/Akt/FoxO1信号通路,鹅掌楸苷R1预处理可提高新生大鼠间充质干细胞移植在心肌梗死模型中的疗效。
IF 7.1 2区 医学
Stem Cell Research & Therapy Pub Date : 2024-11-13 DOI: 10.1186/s13287-024-04039-x
Hao Cai, Xiao-Jing Han, Zhi-Rong Luo, Qiang-Li Wang, Ping-Ping Lu, Fang-Fang Mou, Zhi-Nan Zhao, Dan Hu, Hai-Dong Guo
{"title":"Pretreatment with Notoginsenoside R1 enhances the efficacy of neonatal rat mesenchymal stem cell transplantation in model of myocardial infarction through regulating PI3K/Akt/FoxO1 signaling pathways.","authors":"Hao Cai, Xiao-Jing Han, Zhi-Rong Luo, Qiang-Li Wang, Ping-Ping Lu, Fang-Fang Mou, Zhi-Nan Zhao, Dan Hu, Hai-Dong Guo","doi":"10.1186/s13287-024-04039-x","DOIUrl":"10.1186/s13287-024-04039-x","url":null,"abstract":"<p><strong>Background: </strong>Although stem cell transplantation is a promising approach for the treatment of myocardial infarction (MI), there are still some problems faced such as the low survival rate of stem cells. Here, we investigated the role of Notoginsenoside R1 (NGR1) pretreatment in improving the effects of neonatal rat bone marrow mesenchymal stem cell (MSC) transplantation for treatment of MI.</p><p><strong>Methods: </strong>Cardiac functions were detected by echocardiography and the myocardial infarct size was determined by Masson's trichrome staining in a rat model of MI. The cardioprotective effects of NGR1/LY294002 co-pretreated MSCs was evaluated to explore the underlying mechanism. The angiogenesis was determined by vWF and α-SMA immunofluorescence staining and cell apoptosis was detected by TUNEL. In vitro, the effects of NGR1 on stem cell proliferation was examined by CCK-8 and levels of P-Akt, P-CREB, P-FoxO1 were detected by western blot. Apoptosis, ROS content, and cytokine levels were examined by DAPI and TUNEL staining, a ROS assay kit, and ELISA, respectively.</p><p><strong>Results: </strong>NGR1 elevated the therapeutic effect of MSC transplantation on infarction by preserving cardiac function, increasing angiogenesis and expressions of IGF-1, VEGF, and SDF-1, and reducing cell apoptosis, whereas the addition of LY294002 prior to NGR1 treatment significantly counteracted the foregoing effects of NGR1. NGR1 pretreatment and SC79 pretreatment were similar in that both significantly increased P-Akt and P-FoxO1 levels in MSC and did not affect P-CREB levels. Besides, both NGR1 and SC79 promoted VEGF, SCF and bFGF levels in MSC cultures, and significantly reduced ROS accumulation and the attenuated cell apoptosis in MSC triggered by H<sub>2</sub>O<sub>2</sub>. Similarly, addition of LY294002 before NGR1 treatment significantly counteracted the aforementioned effects of NGR1 in vitro.</p><p><strong>Conclusions: </strong>NGR1 pretreatment enhances the effect of MSC transplantation for treatment of MI through paracrine signaling, and the mechanism underlying this effect may be associated with PI3K/Akt/FoxO1 signaling pathways.</p>","PeriodicalId":21876,"journal":{"name":"Stem Cell Research & Therapy","volume":"15 1","pages":"419"},"PeriodicalIF":7.1,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558819/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell-based therapies reverse the heart failure-altered right ventricular proteome towards a pre-disease state. 基于细胞的疗法可将心力衰竭改变的右心室蛋白质组逆转至疾病前状态。
IF 7.1 2区 医学
Stem Cell Research & Therapy Pub Date : 2024-11-13 DOI: 10.1186/s13287-024-04009-3
Nour Makkaoui, Vidhya Prasad, Pritha Bagchi, Tiffany Carmona, Ke Li, Olivia L Latham, Yuanyuan Zhang, Jingyun Lee, Cristina M Furdui, Joshua T Maxwell
{"title":"Cell-based therapies reverse the heart failure-altered right ventricular proteome towards a pre-disease state.","authors":"Nour Makkaoui, Vidhya Prasad, Pritha Bagchi, Tiffany Carmona, Ke Li, Olivia L Latham, Yuanyuan Zhang, Jingyun Lee, Cristina M Furdui, Joshua T Maxwell","doi":"10.1186/s13287-024-04009-3","DOIUrl":"10.1186/s13287-024-04009-3","url":null,"abstract":"<p><strong>Background: </strong>Congenital heart defects can lead to right ventricular (RV) pressure-overload and heart failure. Cell-based therapies, including mesenchymal stromal cells (MSCs) and c-kit positive cells (CPCs) have been studied clinically as options to restore heart function in disease states. Many studies have indicated these cells act through paracrine mechanisms to prevent apoptosis, promote cellular function, and regulate gene/protein expression. We aimed to determine the proteomic response of diseased hearts to cell therapy.</p><p><strong>Methods: </strong>We utilized a juvenile rat model of RV pressure overload created by banding the pulmonary artery (PAB). Two weeks post-banding, bone marrow-derived mesenchymal stromal cells (MSCs) and 3 populations of CPCs (nCPCs, cCPCs, ES-CPCs) were delivered to the RV free wall. RV function and cellular retention were measured for four weeks post-injection, at which point hearts were extracted and the RV was excised for liquid chromatography and tandem mass spectrometry. Resulting RV proteomes were compared and analyzed using systems biology and bioinformatics.</p><p><strong>Results: </strong>Proteomic profiling identified 1156 total proteins from the RV, of which 5.97% were significantly changed after PAB. This disease-altered proteome was responsive to cellular therapy, with 72% of the PAB-altered proteome being fully or partially reversed by MSC therapy. This was followed by nCPCs (54%), ES-CPCs (52%), and cCPCs (39%). Systems biology and bioinformatics analysis showed MSC, nCPC, or ES-CPC cell therapy is associated with a decrease in predicted adverse cardiac effects. We also observed an effect of cell therapy on the non-altered RV proteome, however, this was associated with minor predicted pathological endpoints.</p><p><strong>Conclusions: </strong>Our data indicate MSCs, ES-CPCs, and nCPCs significantly reverse the PAB-altered proteome towards a pre-disease state in our animal model. These results indicate cell-based therapies show promise in improving RV function after pressure overload through partial restoration of the disease-altered cardiac proteome.</p>","PeriodicalId":21876,"journal":{"name":"Stem Cell Research & Therapy","volume":"15 1","pages":"420"},"PeriodicalIF":7.1,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559167/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142628651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immunomodulatory role of Xenopus tropicalis immature Sertoli cells in tadpole muscle regeneration via macrophage response modulation. 热带爪蟾未成熟 Sertoli 细胞通过巨噬细胞反应调节在蝌蚪肌肉再生中的免疫调节作用
IF 7.1 2区 医学
Stem Cell Research & Therapy Pub Date : 2024-11-13 DOI: 10.1186/s13287-024-04050-2
Qing Zhao, Irem Mertová, Aneta Wróblová, Světlana Žabková, Tereza Tlapáková, Vladimir Krylov
{"title":"Immunomodulatory role of Xenopus tropicalis immature Sertoli cells in tadpole muscle regeneration via macrophage response modulation.","authors":"Qing Zhao, Irem Mertová, Aneta Wróblová, Světlana Žabková, Tereza Tlapáková, Vladimir Krylov","doi":"10.1186/s13287-024-04050-2","DOIUrl":"10.1186/s13287-024-04050-2","url":null,"abstract":"<p><strong>Background: </strong>Regenerative medicine and transplantation science continuously seek methods to circumvent immune-mediated rejection and promote tissue regeneration. Sertoli cells, with their inherent immunoprotective properties, emerge as pivotal players in this quest. However, whether Sertoli cells can play immunomodulatory role in tadpole tail regeneration and can thus benefit the regeneration process are needed to be discovered.</p><p><strong>Methods: </strong>Immature Sertoli cells from Xenopus tropicalis (XtiSCs) were transplanted into X. tropicalis tadpoles, followed by the amputation of the final third of their tails. We assessed the migration of XtiSCs, tail regeneration length, muscle degradation and growth, and macrophage counts across various regions including the entire tail, tail trunk, injection site, and regeneration site. The interactions between XtiSCs and macrophages were examined using a confocal microscope. To deplete macrophages, clodronate liposomes were administered prior to the transplantation of XtiSCs, while the administration of control liposomes acted as a negative control. Student's t-test was used to compare the effects of XtiSCs injection to those of a 2/3PBS injection across groups with no liposomes, control liposomes, and clodronate liposomes.</p><p><strong>Results: </strong>XtiSCs have excellent viability after transplantation to tadpole tail and remarkable homing capabilities to the regeneration site after tail amputation. XtiSCs injection increased macrophage numbers at 3 days post-amputation and 5 days post-amputation in the tail trunk, specifically at the injection site and at the regenerated tail, in a macrophage depleted environment (clodronate-liposome injection). What's more, XtiSCs injection decreased muscle fibers degradation significantly at 1 day post-amputation and facilitated new muscle growth significantly at 3 days post-amputation. In addition, whole-mount immunostaining showed that some XtiSCs co-localized with macrophages. And we observed potential mitochondria transport from XtiSCs to macrophages using MitoTracker staining in tadpole tail.</p><p><strong>Conclusions: </strong>Our study delineates the novel role of XtiSCs in facilitating muscle regeneration post tadpole tail amputation, underscoring a unique interaction with macrophages that is crucial for regenerative success. This study not only highlights the therapeutic potential of Sertoli cells in regenerative medicine but also opens avenues for clinical translation, offering insights into immunoregulatory strategies that could enhance tissue regeneration and transplant acceptance.</p>","PeriodicalId":21876,"journal":{"name":"Stem Cell Research & Therapy","volume":"15 1","pages":"421"},"PeriodicalIF":7.1,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558833/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142628658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phenotypic and transcriptomic profiling of induced pluripotent stem cell (iPSC)-derived NK cells and their cytotoxicity against cancers. 诱导多能干细胞(iPSC)衍生的 NK 细胞的表型和转录组特征及其对癌症的细胞毒性。
IF 7.1 2区 医学
Stem Cell Research & Therapy Pub Date : 2024-11-13 DOI: 10.1186/s13287-024-04029-z
Nontaphat Thongsin, Siriwal Suwanpitak, Punn Augsornworawat, Jakkrapatra Srisantitham, Kritayaporn Saiprayong, Piroon Jenjaroenpun, Methichit Wattanapanitch
{"title":"Phenotypic and transcriptomic profiling of induced pluripotent stem cell (iPSC)-derived NK cells and their cytotoxicity against cancers.","authors":"Nontaphat Thongsin, Siriwal Suwanpitak, Punn Augsornworawat, Jakkrapatra Srisantitham, Kritayaporn Saiprayong, Piroon Jenjaroenpun, Methichit Wattanapanitch","doi":"10.1186/s13287-024-04029-z","DOIUrl":"10.1186/s13287-024-04029-z","url":null,"abstract":"<p><strong>Background: </strong>Adoptive immunotherapy using natural killer (NK) cells has attracted considerable interest in numerous clinical trials targeting both hematological and solid tumors. Traditionally, NK cells are primarily derived from either peripheral blood (PB) or umbilical cord blood (UCB). However, these methods can lead to variability and heterogeneity within the NK cell population. In contrast, induced pluripotent stem cell (iPSC)-derived NK (iNK) cells provide a more controlled and uniform cellular population, suitable for large-scale clinical applications. This makes iNK cells a promising option for developing \"off-the-shelf\" immunotherapeutic products. Nevertheless, current NK cell differentiation protocols, which rely on embryoid body (EB) cultures, are labor-intensive and susceptible to unwanted heterogeneity during differentiation. Here, we developed a more efficient approach for generating iNK cells by employing a monolayer and feeder-free differentiation protocol, alongside optimized culture media.</p><p><strong>Methods: </strong>The iNK cells were generated using a two-step in vitro monolayer feeder-free system following NK cell development. To evaluate their maturity, phenotypic analysis was performed using flow cytometry, comparing with PB-NK cells and the NK-92 cell line. Additionally, single-cell RNA sequencing was performed to examine their transcriptomic profiles. The cytotoxic activity of the iNK cells was evaluated by co-culturing with cholangiocarcinoma (CCA) and breast cancer (BCA) cell lines in both monolayer (2D) and tumor spheroid (3D) co-culture systems.</p><p><strong>Results: </strong>We successfully differentiated iPSCs into mesoderm (ME), hematopoietic stem/progenitor cells (HSPCs), and NK cells. The resulting iNK cells exhibited typical NK cell markers such as CD45, CD56, and CD16, and expressed key functional proteins, including both activating and inhibitory receptors. Single-cell RNA sequencing confirmed that the transcriptomic profile of our iNK cells closely resembles that of PB-NK cells. Importantly, our iNK cells demonstrated strong cytotoxic abilities against various CCA and BCA cell lines, surpassing the NK-92 cell line in both monolayer cultures and tumor spheroid cultures.</p><p><strong>Conclusion: </strong>This study highlights the potential of iPSCs as an effective alternative cell source for generating NK cells. Using a two-step in vitro monolayer feeder-free system, we successfully generated iNK cells that not only expressed key NK cell markers and their receptors but also displayed a transcriptomic profile closely resembling PB-NK cells. Furthermore, iNK cells exhibited cytotoxicity against CCA and BCA cell lines comparable to that of PB-NK cells. This approach could pave the way for off-the-shelf NK cell products, potentially enhancing the effectiveness of adoptive NK cell therapy.</p>","PeriodicalId":21876,"journal":{"name":"Stem Cell Research & Therapy","volume":"15 1","pages":"418"},"PeriodicalIF":7.1,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559060/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142628664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improvement of osteogenic differentiation potential of placenta-derived mesenchymal stem cells by metformin via AMPK pathway activation. 二甲双胍通过激活 AMPK 通路提高胎盘间充质干细胞的成骨分化潜能
IF 7.1 2区 医学
Stem Cell Research & Therapy Pub Date : 2024-11-13 DOI: 10.1186/s13287-024-04014-6
Sirikul Manochantr, Ladda Meesuk, Nuengruethai Chadee, Jintamai Suwanprateeb, Chairat Tantrawatpan, Pakpoom Kheolamai
{"title":"Improvement of osteogenic differentiation potential of placenta-derived mesenchymal stem cells by metformin via AMPK pathway activation.","authors":"Sirikul Manochantr, Ladda Meesuk, Nuengruethai Chadee, Jintamai Suwanprateeb, Chairat Tantrawatpan, Pakpoom Kheolamai","doi":"10.1186/s13287-024-04014-6","DOIUrl":"10.1186/s13287-024-04014-6","url":null,"abstract":"<p><strong>Background: </strong>Placenta-derived human mesenchymal stem cells (PL-MSCs) have gained a lot of attention in the field of regenerative medicine due to their availability and bone-forming capacity. However, the osteogenic differentiation capacity of these cells remains inconsistent and could be improved to achieve greater efficiency. Although metformin, a widely used oral hypoglycemic agent, has been shown to increase bone formation in various cell types, its effect on osteogenic differentiation of PL-MSCs has not yet been investigated. Therefore, the objective of this study was to examine the effect of metformin on the osteogenic differentiation capacity of PL-MSCs and the underlying mechanisms.</p><p><strong>Methods: </strong>The PL-MSCs were treated with 0.5 to 640 µM metformin and their osteogenic differentiation capacity was examined by an alkaline phosphatase (ALP) activity assay, Alizarin red S staining and expression levels of osteogenic genes. The role of adenosine 5'-monophosphate-activated protein kinase (AMPK) signaling in mediating the effect of metformin on the osteogenic differentiation capacity of PL-MSCs was also investigated by determining levels of phosphorylated AMPK (pAMPK)/AMPK ratio and by using compound C, an AMPK inhibitor.</p><p><strong>Results: </strong>The results showed that 10-160 µM metformin significantly increased the viability of PL-MSCs in a dose- and time-dependent manner. Furthermore, 80-320 µM metformin also increased ALP activity, matrix mineralization, and expression levels of osteogenic genes, runt-related transcription factor 2 (RUNX2), osterix (OSX), osteocalcin (OCN) and collagen I (COL1), in PL-MSCs. Metformin increases osteogenic differentiation of PL-MSCs, at least in part, through the AMPK signaling pathway, since the administration of compound C inhibited its enhancing effects on ALP activity, matrix mineralization, and osteogenic gene expression of PL-MSCs.</p><p><strong>Conclusions: </strong>This study demonstrated that metformin at concentrations of 80-320 μM significantly enhanced osteogenic differentiation of PL-MSCs in a dose- and time-dependent manner, primarily through activation of the AMPK signaling pathway. This finding suggests that metformin could be used with other conventional drugs to induce bone regeneration in various bone diseases. Additionally, this study provides valuable insights for future osteoporosis treatment by highlighting the potential of modulating the AMPK pathway to improve bone regeneration.</p>","PeriodicalId":21876,"journal":{"name":"Stem Cell Research & Therapy","volume":"15 1","pages":"417"},"PeriodicalIF":7.1,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559138/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142628659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lactylation of Hdac1 regulated by Ldh prevents the pluripotent-to-2C state conversion. 受 Ldh 调控的 Hdac1 的乳化作用可阻止多能状态向 2C 状态的转换。
IF 7.1 2区 医学
Stem Cell Research & Therapy Pub Date : 2024-11-13 DOI: 10.1186/s13287-024-04027-1
Qiman Dong, Xiaoqiong Yang, Lingling Wang, Qingye Zhang, Nannan Zhao, Shanshan Nai, Xiaoling Du, Lingyi Chen
{"title":"Lactylation of Hdac1 regulated by Ldh prevents the pluripotent-to-2C state conversion.","authors":"Qiman Dong, Xiaoqiong Yang, Lingling Wang, Qingye Zhang, Nannan Zhao, Shanshan Nai, Xiaoling Du, Lingyi Chen","doi":"10.1186/s13287-024-04027-1","DOIUrl":"10.1186/s13287-024-04027-1","url":null,"abstract":"<p><strong>Background: </strong>Cellular metabolism regulates the pluripotency of embryonic stem cells (ESCs). Yet, how metabolism regulates the transition among different pluripotent states remains elusive. It has been shown that protein lactylation, which uses lactate, a metabolic product of glycolysis, as a substrate, plays a critical role in various biological events. Here we focused on that glycolysis regulates the conversion between ESCs and 2-cell-like cells (2CLCs) through protein lactylation.</p><p><strong>Methods: </strong>RNA-seq revealed the activation of 2-cell (2C) genes by suppression of Ldh. Stable isotope labeling by amino acids in cell culture (SILAC) coupled with lactylated peptide enrichment and quantitative mass spectrometric analysis was carried out to investigate the mechanism how protein lactylation regulates the pluripotent-to-2C transition. And we focused on Hdac1. Lactylation of Hdac1 required for silencing 2C genes was proved by quantitative reverse-transcription PCR (qRT-PCR), immunofluorescence (IF), Western blot and chimeric embryos. Chromatin immunoprecipitation coupled with sequencing (ChIP-seq) and in vitro deacetylation assay confirmed lactylation of Hdac1 promoting its binding at 2C genes and enhancing its deacetylase activity, thereby facilitating the removal of H3K27ac and the silencing of 2C genes.</p><p><strong>Results: </strong>We found that inhibition or depletion of Ldha, the enzyme converting pyruvate to lactate, leads to the activation of 2C genes, as well as reduced global lactylation in ESCs. To investigate the mechanism how protein lactylation regulates the pluripotent-to-2C transition, quantitative lactylome analysis was performed, and 1716 lactylated proteins were identified. We then focused on Hdac1, a histone deacetylase involved in the silencing of 2C genes. Lactylation of Hdac1 promotes its binding at 2C genes and enhances its deacetylase activity, thus facilitating the removal of H3K27ac and the silencing of 2C genes.</p><p><strong>Conclusions: </strong>In summary, our study reveals a mechanistic link between cellular metabolism and pluripotency regulation through protein lactylation. Our research is the first time to reveal that quantitative lactylome analysis in mouse ESCs. We found that lactylated Hdac1 promotes its binding at 2C genes and enhances its deacetylase activity, thus facilitating the removal of H3K27ac and the silencing of 2C genes.</p>","PeriodicalId":21876,"journal":{"name":"Stem Cell Research & Therapy","volume":"15 1","pages":"415"},"PeriodicalIF":7.1,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559218/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142628660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Senolysis potentiates endothelial progenitor cell adhesion to and integration into the brain vasculature. 衰老可促进内皮祖细胞粘附到脑血管并融入其中。
IF 7.1 2区 医学
Stem Cell Research & Therapy Pub Date : 2024-11-11 DOI: 10.1186/s13287-024-04042-2
Tri Duc Lam, István Tóth, Anca Hermenean, Imola Wilhelm, Claudine Kieda, István Krizbai, Attila E Farkas
{"title":"Senolysis potentiates endothelial progenitor cell adhesion to and integration into the brain vasculature.","authors":"Tri Duc Lam, István Tóth, Anca Hermenean, Imola Wilhelm, Claudine Kieda, István Krizbai, Attila E Farkas","doi":"10.1186/s13287-024-04042-2","DOIUrl":"10.1186/s13287-024-04042-2","url":null,"abstract":"<p><strong>Background: </strong>One of the most severe consequences of ageing is cognitive decline, which is associated with dysfunction of the brain microvasculature. Thus, repairing the brain vasculature could result in healthier brain function.</p><p><strong>Methods: </strong>To better understand the potential beneficial effect of endothelial progenitor cells (EPCs) in vascular repair, we studied the adhesion and integration of EPCs using the early embryonic mouse aorta-gonad-mesonephros - MAgEC 10.5 endothelial cell line. The EPC interaction with brain microvasculature was monitored ex vivo and in vivo using epifluorescence, laser confocal and two-photon microscopy in healthy young and old animals. The effects of senolysis, EPC activation and ischaemia (two-vessel occlusion model) were analysed in BALB/c and FVB/Ant: TgCAG-yfp_sb #27 mice.</p><p><strong>Results: </strong>MAgEC 10.5 cells rapidly adhered to brain microvasculature and some differentiated into mature endothelial cells (ECs). MAgEC 10.5-derived endothelial cells integrated into microvessels, established tight junctions and co-formed vessel lumens with pre-existing ECs within five days. Adhesion and integration were much weaker in aged mice, but were increased by depleting senescent cells using abt-263 or dasatinib plus quercetin. Furthermore, MAgEC 10.5 cell adhesion to and integration into brain vessels were increased by ischaemia and by pre-activating EPCs with TNFα.</p><p><strong>Conclusions: </strong>Combining progenitor cell therapy with senolytic therapy and the prior activation of EPCs are promising for improving EPC adhesion to and integration into the cerebral vasculature and could help rejuvenate the ageing brain.</p>","PeriodicalId":21876,"journal":{"name":"Stem Cell Research & Therapy","volume":"15 1","pages":"413"},"PeriodicalIF":7.1,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11556082/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信