Uncovering cell type-specific phenotypes using a novel human in vitro model of transthyretin amyloid cardiomyopathy.

IF 7.1 2区 医学 Q1 CELL & TISSUE ENGINEERING
Jiabin Qin, Qiangbing Yang, Asier Ullate-Agote, Vasco Sampaio-Pinto, Laura Florit, Inge Dokter, Chrysoula Mathioudaki, Lotte Middelberg, Pilar Montero-Calle, Paula Aguirre-Ruiz, Joana de Las Heras Rojo, Zhiyong Lei, Zeping Qiu, Jin Wei, Pim van der Harst, Felipe Prosper, Manuel M Mazo, Olalla Iglesias-García, Monique C Minnema, Joost P G Sluijter, Marish I F J Oerlemans, Alain van Mil
{"title":"Uncovering cell type-specific phenotypes using a novel human in vitro model of transthyretin amyloid cardiomyopathy.","authors":"Jiabin Qin, Qiangbing Yang, Asier Ullate-Agote, Vasco Sampaio-Pinto, Laura Florit, Inge Dokter, Chrysoula Mathioudaki, Lotte Middelberg, Pilar Montero-Calle, Paula Aguirre-Ruiz, Joana de Las Heras Rojo, Zhiyong Lei, Zeping Qiu, Jin Wei, Pim van der Harst, Felipe Prosper, Manuel M Mazo, Olalla Iglesias-García, Monique C Minnema, Joost P G Sluijter, Marish I F J Oerlemans, Alain van Mil","doi":"10.1186/s13287-025-04464-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Transthyretin amyloid cardiomyopathy (ATTR-CM) is characterized by the misfolding of transthyretin (TTR), fibrillogenesis, and progressive amyloid fibril deposition in the myocardium, leading to cardiac dysfunction with dismal prognosis. In ATTR-CM, either destabilizing mutations (variant TTR, ATTRv) or ageing-associated processes (wild-type TTR, ATTRwt) lead to the formation of TTR amyloid fibrils. Due to a lack of representative disease models, ATTR-CM disease mechanisms are largely unknown, thereby limiting disease understanding and therapeutic discovery.</p><p><strong>Methods and results: </strong>Here, we report a novel in vitro ATTR-CM model which uncovers cell type-specific disease phenotypes by exposing the three major human cardiac cell types to TTR fibrils, thereby providing novel insights into the cellular mechanisms of ATTR-CM disease. Human recombinant TTR proteins (WT, V122I, V30M) and respective fibrils were generated and characterized using Thioflavin T, Amytracker, Congo red and dot blot analyses. Seeding human induced pluripotent stem cell-derived-cardiomyocytes (hiPSC-CMs) and endothelial cells (ECs) on TTR fibrils resulted in reduced cell viability. Confocal microscopy revealed extracellular localization of TTR fibrils to hiPSC-CMs, leading to sarcomere disruption, altered calcium handling and disrupted electromechanical coupling, while ECs showed a reduced migration capacity with aberrant cell morphology. hiPSC-fibroblasts (hiPSC-FBs) were largely unaffected by TTR fibrils, presenting normal viability, but showing enhanced localization with TTR fibrils.</p><p><strong>Conclusions: </strong>Our model shows that WT and variant TTR fibrils lead to cell type-specific phenotypes, providing novel insights into the underlying cellular disease mechanisms of ATTR-CM, thereby facilitating the identification of novel therapeutic targets and biomarkers.</p>","PeriodicalId":21876,"journal":{"name":"Stem Cell Research & Therapy","volume":"16 1","pages":"352"},"PeriodicalIF":7.1000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12232587/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Research & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13287-025-04464-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Transthyretin amyloid cardiomyopathy (ATTR-CM) is characterized by the misfolding of transthyretin (TTR), fibrillogenesis, and progressive amyloid fibril deposition in the myocardium, leading to cardiac dysfunction with dismal prognosis. In ATTR-CM, either destabilizing mutations (variant TTR, ATTRv) or ageing-associated processes (wild-type TTR, ATTRwt) lead to the formation of TTR amyloid fibrils. Due to a lack of representative disease models, ATTR-CM disease mechanisms are largely unknown, thereby limiting disease understanding and therapeutic discovery.

Methods and results: Here, we report a novel in vitro ATTR-CM model which uncovers cell type-specific disease phenotypes by exposing the three major human cardiac cell types to TTR fibrils, thereby providing novel insights into the cellular mechanisms of ATTR-CM disease. Human recombinant TTR proteins (WT, V122I, V30M) and respective fibrils were generated and characterized using Thioflavin T, Amytracker, Congo red and dot blot analyses. Seeding human induced pluripotent stem cell-derived-cardiomyocytes (hiPSC-CMs) and endothelial cells (ECs) on TTR fibrils resulted in reduced cell viability. Confocal microscopy revealed extracellular localization of TTR fibrils to hiPSC-CMs, leading to sarcomere disruption, altered calcium handling and disrupted electromechanical coupling, while ECs showed a reduced migration capacity with aberrant cell morphology. hiPSC-fibroblasts (hiPSC-FBs) were largely unaffected by TTR fibrils, presenting normal viability, but showing enhanced localization with TTR fibrils.

Conclusions: Our model shows that WT and variant TTR fibrils lead to cell type-specific phenotypes, providing novel insights into the underlying cellular disease mechanisms of ATTR-CM, thereby facilitating the identification of novel therapeutic targets and biomarkers.

揭示细胞类型特异性表型使用一个新的人类体外模型转甲状腺蛋白淀粉样心肌病。
背景:转甲状腺素淀粉样心肌病(atr - cm)的特点是转甲状腺素(TTR)错误折叠,纤维形成,心肌内进行性淀粉样纤维沉积,导致心功能障碍,预后不佳。在atr - cm中,不稳定突变(变体TTR, ATTRv)或衰老相关过程(野生型TTR, ATTRwt)都会导致TTR淀粉样原纤维的形成。由于缺乏具有代表性的疾病模型,atr - cm的发病机制在很大程度上是未知的,从而限制了对疾病的认识和治疗方法的发现。方法和结果:在这里,我们报告了一种新的体外ATTR-CM模型,该模型通过将三种主要的人类心脏细胞类型暴露于TTR原纤维来揭示细胞类型特异性疾病表型,从而为ATTR-CM疾病的细胞机制提供了新的见解。生成人重组TTR蛋白(WT, V122I, V30M)和各自的原纤维,并使用thiioflavin T、Amytracker、刚果红和点印迹分析对其进行了表征。在TTR原纤维上植入人诱导多能干细胞衍生的心肌细胞(hiPSC-CMs)和内皮细胞(ECs)导致细胞活力降低。共聚焦显微镜显示,细胞外TTR原纤维定位于hiPSC-CMs,导致肌瘤破坏,钙处理改变和机电耦合中断,而ECs表现出迁移能力下降和细胞形态异常。hipsc成纤维细胞(hiPSC-FBs)在很大程度上不受TTR原纤维的影响,表现出正常的活力,但显示出TTR原纤维增强的定位。结论:我们的模型显示,WT和变异的TTR原纤维导致细胞类型特异性表型,为atr - cm潜在的细胞疾病机制提供了新的见解,从而促进了新的治疗靶点和生物标志物的鉴定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stem Cell Research & Therapy
Stem Cell Research & Therapy CELL BIOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
13.20
自引率
8.00%
发文量
525
审稿时长
1 months
期刊介绍: Stem Cell Research & Therapy serves as a leading platform for translational research in stem cell therapies. This international, peer-reviewed journal publishes high-quality open-access research articles, with a focus on basic, translational, and clinical research in stem cell therapeutics and regenerative therapies. Coverage includes animal models and clinical trials. Additionally, the journal offers reviews, viewpoints, commentaries, and reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信