Pest Management Science最新文献

筛选
英文 中文
Design, synthesis and antifungal activity of arylhydrazine analogs containing diphenyl ether fragments. 含二苯醚片段的芳基肼类似物的设计、合成和抗真菌活性。
IF 3.8 1区 农林科学
Pest Management Science Pub Date : 2025-02-01 Epub Date: 2024-10-28 DOI: 10.1002/ps.8498
Longjian Qiu, Yaru Liu, Lijuan Zhang, Aixi Hu, Jiao Ye, Zhongzhong Yan
{"title":"Design, synthesis and antifungal activity of arylhydrazine analogs containing diphenyl ether fragments.","authors":"Longjian Qiu, Yaru Liu, Lijuan Zhang, Aixi Hu, Jiao Ye, Zhongzhong Yan","doi":"10.1002/ps.8498","DOIUrl":"10.1002/ps.8498","url":null,"abstract":"<p><strong>Background: </strong>Succinate dehydrogenase (SDH) represents a critical target in the development of novel fungicides. To address the growing issue of resistance and safeguard the economic viability of agricultural production, the pursuit of new succinate dehydrogenase inhibitors (SDHIs) has emerged as a significant focus of contemporary research.</p><p><strong>Results: </strong>In this project, 32 arylhydrazine derivatives containing diphenyl ether structural units were synthesized and evaluated for their fungicidal activities against Rhizoctonia solani, Sclerotinia sclerotiorum, Alternaria alternata, Gibberella zeae, Alternaria solani and Colletotrichum gloeosporioides. In an in vitro fungicidal activity assay, compound D6 showed significant inhibitory activity against R. solani with a half-maximum effective concentration (EC<sub>50</sub>) of 0.09 mg L<sup>-1</sup>. The in vivo fungicidal activity demonstrated that compound D6 inhibited R. solani by 95.39% in rice leaves, which was significantly better than that of boscalid (85.76%). The results of SDH enzyme assay, molecular docking simulation, mitochondrial membrane potential assay, cytoplasmic release studies and morphological observations demonstrated that the target compound D6 not only had significant SDH inhibitory activity, but also affected the membrane integrity of mycelium.</p><p><strong>Conclusion: </strong>Bioactivity screening and validation of the mechanism of action indicated that compound D6 was a potentially unique SDHI, acting on SDH while also affecting cell membrane permeability, which deserved further study. © 2024 Society of Chemical Industry.</p>","PeriodicalId":218,"journal":{"name":"Pest Management Science","volume":" ","pages":"990-1002"},"PeriodicalIF":3.8,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the functions of the Lim-domain binding protein MaPtaB in Metarhizium acridum. 揭示疟原虫中 Lim-domain结合蛋白MaPtaB的功能。
IF 3.8 1区 农林科学
Pest Management Science Pub Date : 2025-02-01 Epub Date: 2024-10-29 DOI: 10.1002/ps.8488
Yanru Du, Meiwen Hu, Yuxian Xia, Kai Jin
{"title":"Unveiling the functions of the Lim-domain binding protein MaPtaB in Metarhizium acridum.","authors":"Yanru Du, Meiwen Hu, Yuxian Xia, Kai Jin","doi":"10.1002/ps.8488","DOIUrl":"10.1002/ps.8488","url":null,"abstract":"<p><strong>Background: </strong>The Lim-domain binding protein PtaB, a homolog of Mfg1, governs conidiation and biofilm formation in several fungi. PtaB includes a conserved Lim-binding domain and two predicted nuclear localization sequences at its C terminus, and is co-regulated with the transcription factor Som1 downstream of the cyclic AMP-dependent protein kinase A (cAMP/PKA) pathway. However, the function of PtaB in entomopathogenic fungi remain poorly understood.</p><p><strong>Results: </strong>Inactivation of PtaB in Metarhizium acridum resulted in delayed conidial germination, reduced conidial yield and increased sensitivities to cell wall disruptors, ultraviolet B irradiation and heat shock. In addition, the fungal virulence was significantly decreased after deletion of MaPtaB because of impairments in appressorium formation, cuticle penetration and evasion of insect immune responses in M. acridum. The MaPtaB-deletion and MaSom1-deletion strains showed similar phenotypes supporting that MaSom1/MaPtaB complex controls M. acridum normal conidiation and pathogenic progress. Upon loss of MaPtaB or MaSom1, the fungal sporulation mode in M. acridium shifted from microcycle conidiation to normal conidiation on SYA, a microcycle conidiation medium. Transcriptional analysis showed that more differentially expression genes were identified in MaSom1 RNA sequencing, and MaSom1 and MaPtaB may regulate the expression of genes for conidiation, nutrient metabolism and the cell cycle to control conidiation pattern shift.</p><p><strong>Conclusion: </strong>These data corroborate a complex control function for MaPtaB as an important central factor interacting with MaSom1 in the cAMP/PKA pathway, which links stress tolerance, conidiation and virulence in the entomopathogenic fungus M. acridum. © 2024 Society of Chemical Industry.</p>","PeriodicalId":218,"journal":{"name":"Pest Management Science","volume":" ","pages":"839-855"},"PeriodicalIF":3.8,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of melanization in aphids by parasitoid wasp venom proteins enhances mummification. 寄生蜂毒液蛋白对蚜虫黑色素化的调控可促进木乃伊化。
IF 3.8 1区 农林科学
Pest Management Science Pub Date : 2025-02-01 Epub Date: 2024-11-04 DOI: 10.1002/ps.8503
Jin Zhao, Zheng-Wu Wang, Guangmao Shen, Die Hu, Yi Zhong, Chao Ye, Jin-Jun Wang
{"title":"Regulation of melanization in aphids by parasitoid wasp venom proteins enhances mummification.","authors":"Jin Zhao, Zheng-Wu Wang, Guangmao Shen, Die Hu, Yi Zhong, Chao Ye, Jin-Jun Wang","doi":"10.1002/ps.8503","DOIUrl":"10.1002/ps.8503","url":null,"abstract":"<p><strong>Background: </strong>Interactions between parasitic insects and their hosts demonstrate the complexity of evolutionary processes. Specifically, the parasitoid wasp Aphidius ervi manipulates its host, the pea aphid Acyrthosiphon pisum, through strategic venom injection to enhance mummification. This study explores how this venom affects the aphid's immune system, particularly targeting the activity of the phenoloxidase (PO) enzyme.</p><p><strong>Results: </strong>Following the injection of venom from A. ervi, significant changes were observed in the expression of immune-related genes in A. pisum, especially notable expression changes of ApPPOs and a reduction of PO activity. Multi-omics sequencing identified 74 potential venom proteins in the venom gland of A. ervi, including serine protease homolog 1 (AeSPH1) and serine protease inhibitor (AeSPN1), hypothesized to regulate PO activity. The injection of recombinant protein AeSPH1 and AeSPN1 into the A. pisum hemocoel selectively reduced the expression of ApPPO1, without affecting ApPPO2, and effectively suppressed melanization. Moreover, RNAi targeting AeSPH1 significantly reduced the mummification rate in A. pisum population parasitized by A. ervi.</p><p><strong>Conclusion: </strong>Our findings clarify the complex biochemical mechanisms underlying host-wasp interactions and highlight potential avenues for developing targeted biological control strategies. © 2024 Society of Chemical Industry.</p>","PeriodicalId":218,"journal":{"name":"Pest Management Science","volume":" ","pages":"1017-1025"},"PeriodicalIF":3.8,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Superior target genes and pathways for RNAi-mediated pest control revealed by genome-wide analysis in the beetle Tribolium castaneum. 通过对甲虫Tribolium castaneum的全基因组分析,发现RNAi介导的害虫控制的优良目标基因和途径。
IF 3.8 1区 农林科学
Pest Management Science Pub Date : 2025-02-01 Epub Date: 2024-11-05 DOI: 10.1002/ps.8505
Benjamin Buer, Jürgen Dönitz, Martin Milner, Sonja Mehlhorn, Claudia Hinners, Janna Siemanowski-Hrach, Julia K Ulrich, Daniela Großmann, Doga Cedden, Ralf Nauen, Sven Geibel, Gregor Bucher
{"title":"Superior target genes and pathways for RNAi-mediated pest control revealed by genome-wide analysis in the beetle Tribolium castaneum.","authors":"Benjamin Buer, Jürgen Dönitz, Martin Milner, Sonja Mehlhorn, Claudia Hinners, Janna Siemanowski-Hrach, Julia K Ulrich, Daniela Großmann, Doga Cedden, Ralf Nauen, Sven Geibel, Gregor Bucher","doi":"10.1002/ps.8505","DOIUrl":"10.1002/ps.8505","url":null,"abstract":"<p><strong>Background: </strong>An increasing human population, the emergence of resistances against pesticides and their potential impact on the environment call for the development of new eco-friendly pest control strategies. RNA interference (RNAi)-based pesticides have emerged as a new option with the first products entering the market. Essentially, double-stranded RNAs targeting essential genes of pests are either expressed in the plants or sprayed on their surface. Upon feeding, pests mount an RNAi response and die. However, it has remained unclear whether RNAi-based insecticides should target the same pathways as classic pesticides or whether the different mode-of-action would favor other processes. Moreover, there is no consensus on the best genes to be targeted.</p><p><strong>Results: </strong>We performed a genome-wide screen in the red flour beetle to identify 905 RNAi target genes. Based on a validation screen and clustering, we identified the 192 most effective target genes in that species. The transfer to oral application in other beetle pests revealed a list of 34 superior target genes, which are an excellent starting point for application in other pests. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analyses of our genome-wide dataset revealed that genes with high efficacy belonged mainly to basic cellular processes such as gene expression and protein homeostasis - processes not targeted by classic insecticides.</p><p><strong>Conclusion: </strong>Our work revealed the best target genes and target processes for RNAi-based pest control and we propose a procedure to transfer our short list of superior target genes to other pests. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.</p>","PeriodicalId":218,"journal":{"name":"Pest Management Science","volume":" ","pages":"1026-1036"},"PeriodicalIF":3.8,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11716340/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142575245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Appropriate sampling to aid on-farm assessments of the haplotype composition of Zymoseptoria tritici populations. 进行适当的取样,以帮助在农场评估三尖杉蝽种群的单倍型组成。
IF 3.8 1区 农林科学
Pest Management Science Pub Date : 2025-02-01 Epub Date: 2024-10-11 DOI: 10.1002/ps.8454
Catherine Harrison, Neil Boonham, Roy Macarthur, Michael David Parr, Femke van den Berg
{"title":"Appropriate sampling to aid on-farm assessments of the haplotype composition of Zymoseptoria tritici populations.","authors":"Catherine Harrison, Neil Boonham, Roy Macarthur, Michael David Parr, Femke van den Berg","doi":"10.1002/ps.8454","DOIUrl":"10.1002/ps.8454","url":null,"abstract":"<p><strong>Background: </strong>Zymoseptoria tritici causes Septoria tritici blotch (STB), which is the biggest threat to wheat in the UK. Azole fungicides have been used since the 1980s to control STB, but resistance to these chemicals is now widespread. The main resistance mechanism is based on the accumulation of CYP51 mutations, with 33 mutations reported. Hence, farmers need an accurate estimate of the haplotype composition of Z. tritici populations to develop effective fungicide treatments and resistance management.</p><p><strong>Results: </strong>Isolates from Z. tritici lesions were collected from three fields across three commercial farms using two sampling approaches. Analysis of the isolate sequences revealed that the number of distinct haplotypes and the haplotype composition of the most dominant haplotypes varied only between and not within farms. Conventional W-shaped and point sampling both found the same percentage of distinct haplotypes and frequencies of the six most dominant haplotypes.</p><p><strong>Conclusion: </strong>The results from this survey suggest that farm-resistance-management strategies should be based on farm-specific rather than national data, and that sampling within a single field is sufficient. W-shaped sampling is often recommended in sampling approaches, but this survey finds no evidence of this approach being more appropriate for detecting a greater percentage of distinct haplotypes which may aid the discovery of potential new resistance threats. © 2024 Fera Science Ltd. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.</p>","PeriodicalId":218,"journal":{"name":"Pest Management Science","volume":" ","pages":"599-606"},"PeriodicalIF":3.8,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11716361/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142398867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DMI fungicide resistance in Zymoseptoria tritici is unlinked to geographical origin and genetic background: a case study in Europe. Zymoseptoria tritici 对 DMI 杀菌剂的抗性与地理来源和遗传背景无关:欧洲的一项案例研究。
IF 3.8 1区 农林科学
Pest Management Science Pub Date : 2025-02-01 Epub Date: 2024-11-06 DOI: 10.1002/ps.8514
Eula Gems Oreiro, Berit Samils, Steven Kildea, Thies Heick, Pierre Hellin, Anne Legrève, Bernd Rodemann, Gunilla Berg, Lise N Jørgensen, Hanna Friberg, Anna Berlin, Jiasui Zhan, Björn Andersson
{"title":"DMI fungicide resistance in Zymoseptoria tritici is unlinked to geographical origin and genetic background: a case study in Europe.","authors":"Eula Gems Oreiro, Berit Samils, Steven Kildea, Thies Heick, Pierre Hellin, Anne Legrève, Bernd Rodemann, Gunilla Berg, Lise N Jørgensen, Hanna Friberg, Anna Berlin, Jiasui Zhan, Björn Andersson","doi":"10.1002/ps.8514","DOIUrl":"10.1002/ps.8514","url":null,"abstract":"<p><strong>Background: </strong>The hemibiotrophic fungus Zymoseptoria tritici causing Septoria tritici blotch (STB), is a devastating foliar pathogen of wheat worldwide. A common group of fungicides used to control STB are the demethylation inhibitors (DMIs). DMI fungicides restrict fungal growth by inhibiting the sterol 14-α-demethylase, a protein encoded by CYP51 gene and essential for maintaining fungal cell permeability. However, the adaptation of Z. tritici populations in response to intensive and prolonged DMI usage has resulted in a gradual shift towards reduced sensitivity to this group of fungicides. In this study, 311 isolates were collected pre-treatment from nine wheat-growing regions in Europe in 2019. These isolates were analysed by high-throughput amplicon-based sequencing of nine housekeeping genes and the CYP51 gene.</p><p><strong>Results: </strong>Analyses based on housekeeping genes and the CYP51 gene revealed a lack of population structure in Z. tritici samples irrespective of geographical origin. Minimum spanning network (MSN) analysis showed clustering of multilocus genotypes (MLGs) based on CYP51 haplotypes, indicating an effect of selection due to DMI fungicide use. The majority of the haplotypes identified in this study have been reported previously. The diversity and frequencies of mutations varied across regions.</p><p><strong>Conclusion: </strong>Using a high-throughput amplicon-sequencing approach, we found several mutations in the CYP51 gene combined in different haplotypes that are likely to cause fungicide resistance. These mutations occurred irrespective of genetic background or geographical origin. Overall, these results contribute to the development of effective and sustainable risk monitoring for DMI fungicide resistance. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.</p>","PeriodicalId":218,"journal":{"name":"Pest Management Science","volume":" ","pages":"1103-1112"},"PeriodicalIF":3.8,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11716363/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling the molecular mechanism of FgGcn5 inhibition by phenazine-1-carboxamide: combined in silico and in vitro studies. 揭示吩嗪-1-甲酰胺抑制 FgGcn5 的分子机制:硅学和体外联合研究。
IF 3.8 1区 农林科学
Pest Management Science Pub Date : 2025-02-01 Epub Date: 2024-10-28 DOI: 10.1002/ps.8496
Lei Li, Qing Luo, Shuai Yang, Hancheng Wang, Yuguang Mu, Jingjing Guo, Feng Zhang
{"title":"Unraveling the molecular mechanism of FgGcn5 inhibition by phenazine-1-carboxamide: combined in silico and in vitro studies.","authors":"Lei Li, Qing Luo, Shuai Yang, Hancheng Wang, Yuguang Mu, Jingjing Guo, Feng Zhang","doi":"10.1002/ps.8496","DOIUrl":"10.1002/ps.8496","url":null,"abstract":"<p><strong>Background: </strong>Fusarium head blight (FHB), mainly caused by Fusarium graminearum (F. graminearum), remains a devastating disease worldwide. The histone acetyltransferase Gcn5 plays a crucial role in epigenetic regulation. Aberrant Gcn5 acetylation activity can result in serious impacts such as impaired growth and development in organisms. The secondary metabolite phenazine-1-carboxamide (PCN) inhibits F. graminearum by blocking the acetylation process of Gcn5 (FgGcn5), and is currently used to control FHB. However, the molecular basis of acetylation inhibition by PCN remains to be further explored.</p><p><strong>Results: </strong>Our molecular dynamics simulations revealed that PCN binds to the cleft in FgGcn5 where histone H3 is bound, with key amino acid residues including Leu96 (L96), Arg121 (R121), Phe133 (F133), Tyr169 (Y169), and Tyr201 (Y201), preventing FgGcn5 from binding to histone H3 and affecting histone H3 from being acetylated. Experimental validation of key amino acid mutations further confirmed the impact of these mutations on the interaction of FgGcn5 with PCN and histone H3 peptide.</p><p><strong>Conclusion: </strong>In summary, our study sheds light on the mechanism by which PCN inhibits the acetylation function of FgGcn5, providing a foundation for the development of drugs or fungicides targeting histone acetyltransferases. © 2024 Society of Chemical Industry.</p>","PeriodicalId":218,"journal":{"name":"Pest Management Science","volume":" ","pages":"937-945"},"PeriodicalIF":3.8,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The miR-31b targets arylsulfatase B to regulate the ovarian development of Bactrocera dorsalis. miR-31b以芳基硫酸酯酶B为靶标,调控背带蝠的卵巢发育。
IF 3.8 1区 农林科学
Pest Management Science Pub Date : 2025-02-01 Epub Date: 2024-11-04 DOI: 10.1002/ps.8513
Shan-Shan Yu, Qiang Zhang, Li-Yuan Zheng, Qian-Ping Xie, Jin-Jun Wang, Wei Dou
{"title":"The miR-31b targets arylsulfatase B to regulate the ovarian development of Bactrocera dorsalis.","authors":"Shan-Shan Yu, Qiang Zhang, Li-Yuan Zheng, Qian-Ping Xie, Jin-Jun Wang, Wei Dou","doi":"10.1002/ps.8513","DOIUrl":"10.1002/ps.8513","url":null,"abstract":"<p><strong>Background: </strong>Reproduction is the basis of insect population growth and evolution, and encompasses ovarian development, reproductive behavior, and fecundity. Bactrocera dorsalis is a globally significant agricultural pest that is subject to quarantine, with mated females that can lay over 3000 eggs. The post-transcriptional regulation of ovarian development remains unclear. Here, miR-31b is shown to be involved in regulating Bactrocera dorsalis ovarian development.</p><p><strong>Results: </strong>CRISPR/Cas9 was used to generate miR-31b loss-of-function mutations in Bactrocera dorsalis. The removal of miR-31b resulted in severely impaired ovarian development in adults, with phenotypes that included dramatically reduced egg production and hatching rates. The relationship between miR-31b and its target gene arylsulfatase B (ARSB) was subsequently identified using the methods of bioinformatics, transcriptomic sequencing, quantitative polymerase chain reaction (qPCR), RNA pull-down and dual-luciferase reporter assay. Finally, miR-31b was confirmed to bind the target gene arylsulfatase B to affect metabolism and thereby further hindered ovarian development of Bactrocera dorsalis.</p><p><strong>Conclusion: </strong>Overall, these results provide new insights into molecular mechanisms at the post-transcriptional level in regulating ovarian development and insect reproduction, consequently providing potential targets to control arthropod pests through the reproductive strategy. © 2024 Society of Chemical Industry.</p>","PeriodicalId":218,"journal":{"name":"Pest Management Science","volume":" ","pages":"1094-1102"},"PeriodicalIF":3.8,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Naturally-occurring nematicides of plant origin: two decades of novel chemistries. 源自植物的天然杀线虫剂:二十年的新型化学成分。
IF 3.8 1区 农林科学
Pest Management Science Pub Date : 2025-02-01 Epub Date: 2024-11-06 DOI: 10.1002/ps.8504
Hashim Ibrahim, Vaderament-A Nchiozem-Ngnitedem, Louise-Marie Dandurand, Inna Popova
{"title":"Naturally-occurring nematicides of plant origin: two decades of novel chemistries.","authors":"Hashim Ibrahim, Vaderament-A Nchiozem-Ngnitedem, Louise-Marie Dandurand, Inna Popova","doi":"10.1002/ps.8504","DOIUrl":"10.1002/ps.8504","url":null,"abstract":"<p><p>Plant-parasitic nematodes are among the most destructive plant pathogens, resulting in a global annual economic loss of about 358 billion dollars. Using synthetic nematicides to control plant-parasitic nematodes has resulted in broad-spectrum toxicity to the environment. Plant-derived secondary metabolites have recently emerged as viable options that provide effective, greener, and renewable routes for managing plant-parasitic nematodes in various cropping systems. However, limited comprehensive information on plant-derived secondary metabolites sources, chemical structures, and nematicidal activities is available. This study aims to compile and analyze data on plant-based secondary metabolites with nematicidal properties collected over the last two decades. In this review, we identified 262 plant-based metabolites with nematicidal activities that were isolated from 35 plant families and 65 plant species. Alkaloids, terpenoids, saponins, flavonoids, coumarins, thiophenes, and annonaceous acetogenins were among the most studied compounds. In addition to the structure-activity relation for specific metabolites with nematicidal potency, various techniques for their extraction and isolation from plant material are discussed. Our findings demonstrate the potential of plants as a feedstock for sourcing nematicidal compounds and discovering new chemistries that could potentially be used for developing the next generation of nematicides. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.</p>","PeriodicalId":218,"journal":{"name":"Pest Management Science","volume":" ","pages":"540-571"},"PeriodicalIF":3.8,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11716366/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering the novel azobenzene-based molecular photoswitches for suppressing bacterial infection through dynamic regulation of biofilm formation. 设计新型偶氮苯分子光开关,通过动态调节生物膜的形成抑制细菌感染。
IF 3.8 1区 农林科学
Pest Management Science Pub Date : 2025-02-01 Epub Date: 2024-10-07 DOI: 10.1002/ps.8453
Tai-Hong Zhang, Yi-Ke Yang, Yu-Mei Feng, Zhi-Jun Luo, Ming-Wei Wang, Pu-Ying Qi, Dan Zeng, Hong-Wu Liu, Yan-Mei Liao, Jiao Meng, Xiang Zhou, Li-Wei Liu, Song Yang
{"title":"Engineering the novel azobenzene-based molecular photoswitches for suppressing bacterial infection through dynamic regulation of biofilm formation.","authors":"Tai-Hong Zhang, Yi-Ke Yang, Yu-Mei Feng, Zhi-Jun Luo, Ming-Wei Wang, Pu-Ying Qi, Dan Zeng, Hong-Wu Liu, Yan-Mei Liao, Jiao Meng, Xiang Zhou, Li-Wei Liu, Song Yang","doi":"10.1002/ps.8453","DOIUrl":"10.1002/ps.8453","url":null,"abstract":"<p><strong>Background: </strong>Bacterial biofilm is a strong fortress for bacteria to resist harsh external environments, which can enhance their tolerance and exacerbate the drug/pesticide resistance risk. Currently, photopharmacology provides an advanced approach via precise spatiotemporal control for regulating biological activities by light-controlling the molecular configurations, thereby having enormous potential in the development of drug/pesticides.</p><p><strong>Results: </strong>To further expand the photopharmacology application for discovering new antibiofilm agents, we prepared a series of light-controlled azo-active molecules and explored their photo isomerization, fatigue resistance, and anti-biofilm performance. Furthermore, their mechanisms of inhibiting biofilm formation were systematically investigated. Overall, designed azo-derivative A11 featured excellent anti-Xoo activity with an half-maximal effective concentration (EC<sub>50</sub>) value of 5.45 μg mL<sup>-1</sup>, and the EC<sub>50</sub> value could be further elevated to 2.19 μg mL<sup>-1</sup> after ultraviolet irradiation (converted as cis-configuration). The photo-switching behavior showed that A11 had outstanding anti-fatigue properties. An in-depth analysis of the action mechanism showed that A11 could effectively inhibit biofilm formation and the expression of relevant virulence factors. This performance could be dynamically regulated via loading with private light-switch property.</p><p><strong>Conclusion: </strong>In this work, designed light-controlled azo molecules provide a new model for resisting bacterial infection via dynamic regulation of bacterial biofilm formation. © 2024 Society of Chemical Industry.</p>","PeriodicalId":218,"journal":{"name":"Pest Management Science","volume":" ","pages":"585-598"},"PeriodicalIF":3.8,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142379589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信