SLAS Discovery最新文献

筛选
英文 中文
An acute respiratory distress syndrome drug development collaboration stimulated by the Virginia Drug Discovery Consortium 由弗吉尼亚药物发现联盟推动的急性呼吸窘迫综合征药物开发合作。
IF 3.1 4区 生物学
SLAS Discovery Pub Date : 2023-09-01 DOI: 10.1016/j.slasd.2023.02.001
John S. Lazo , Ruben M.L. Colunga-Biancatelli , Pavel. A. Solopov , John D. Catravas
{"title":"An acute respiratory distress syndrome drug development collaboration stimulated by the Virginia Drug Discovery Consortium","authors":"John S. Lazo ,&nbsp;Ruben M.L. Colunga-Biancatelli ,&nbsp;Pavel. A. Solopov ,&nbsp;John D. Catravas","doi":"10.1016/j.slasd.2023.02.001","DOIUrl":"10.1016/j.slasd.2023.02.001","url":null,"abstract":"<div><p>The genesis of most older medicinal agents has generally been empirical. During the past one and a half centuries, at least in the Western countries, discovering and developing drugs has been primarily the domain of pharmaceutical companies largely built upon concepts emerging from organic chemistry. Public sector funding for the discovery of new therapeutics has more recently stimulated local, national, and international groups to band together and focus on new human disease targets and novel treatment approaches. This Perspective describes one contemporary example of a newly formed collaboration that was simulated by a regional drug discovery consortium. University of Virginia, Old Dominion University, and a university spinout company, KeViRx, Inc., partnered under a NIH Small Business Innovation Research grant, to produce potential therapeutics for acute respiratory distress syndrome resulting from the ongoing COVID-19 pandemic.</p></div>","PeriodicalId":21764,"journal":{"name":"SLAS Discovery","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9930264/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10295780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Merging cultures and disciplines to create a drug discovery ecosystem at Virginia commonwealth university: Medicinal chemistry, structural biology, molecular and behavioral pharmacology and computational chemistry 融合文化和学科,在弗吉尼亚联邦大学创建药物发现生态系统:药物化学、结构生物学、分子和行为药理学以及计算化学。
IF 3.1 4区 生物学
SLAS Discovery Pub Date : 2023-09-01 DOI: 10.1016/j.slasd.2023.02.006
Glen E. Kellogg, Yana Cen, Malgorzata Dukat, Keith C. Ellis, Youzhong Guo, Jiong Li, Aaron E. May, Martin K. Safo, Shijun Zhang, Yan Zhang, Umesh R. Desai
{"title":"Merging cultures and disciplines to create a drug discovery ecosystem at Virginia commonwealth university: Medicinal chemistry, structural biology, molecular and behavioral pharmacology and computational chemistry","authors":"Glen E. Kellogg,&nbsp;Yana Cen,&nbsp;Malgorzata Dukat,&nbsp;Keith C. Ellis,&nbsp;Youzhong Guo,&nbsp;Jiong Li,&nbsp;Aaron E. May,&nbsp;Martin K. Safo,&nbsp;Shijun Zhang,&nbsp;Yan Zhang,&nbsp;Umesh R. Desai","doi":"10.1016/j.slasd.2023.02.006","DOIUrl":"10.1016/j.slasd.2023.02.006","url":null,"abstract":"<div><p>The Department of Medicinal Chemistry, together with the Institute for Structural Biology, Drug Discovery and Development, at Virginia Commonwealth University (VCU) has evolved, organically with quite a bit of bootstrapping, into a unique drug discovery ecosystem in response to the environment and culture of the university and the wider research enterprise. Each faculty member that joined the department and/or institute added a layer of expertise, technology and most importantly, innovation, that fertilized numerous collaborations within the University and with outside partners. Despite moderate institutional support with respect to a typical drug discovery enterprise, the VCU drug discovery ecosystem has built and maintained an impressive array of facilities and instrumentation for drug synthesis, drug characterization, biomolecular structural analysis and biophysical analysis, and pharmacological studies. Altogether, this ecosystem has had major impacts on numerous therapeutic areas, such as neurology, psychiatry, drugs of abuse, cancer, sickle cell disease, coagulopathy, inflammation, aging disorders and others. Novel tools and strategies for drug discovery, design and development have been developed at VCU in the last five decades; e.g., fundamental rational structure-activity relationship (SAR)-based drug design, structure-based drug design, orthosteric and allosteric drug design, design of multi-functional agents towards polypharmacy outcomes, principles on designing glycosaminoglycans as drugs, and computational tools and algorithms for quantitative SAR (QSAR) and understanding the roles of water and the hydrophobic effect.</p></div>","PeriodicalId":21764,"journal":{"name":"SLAS Discovery","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10299092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Assay of Sphingosine 1-phosphate Transporter Spinster Homolog 2 (Spns2) Inhibitors 1-磷酸鞘氨醇转运蛋白同源物2(Spns2)抑制剂的测定。
IF 3.1 4区 生物学
SLAS Discovery Pub Date : 2023-09-01 DOI: 10.1016/j.slasd.2023.07.001
Yugesh Kharel , Tao Huang , Webster L. Santos , Kevin R. Lynch
{"title":"Assay of Sphingosine 1-phosphate Transporter Spinster Homolog 2 (Spns2) Inhibitors","authors":"Yugesh Kharel ,&nbsp;Tao Huang ,&nbsp;Webster L. Santos ,&nbsp;Kevin R. Lynch","doi":"10.1016/j.slasd.2023.07.001","DOIUrl":"10.1016/j.slasd.2023.07.001","url":null,"abstract":"<div><p>The sphingosine-1-phosphate (S1P) pathway remains an active area of research for drug discovery because S1P modulators are effective medicine for autoimmune diseases such as multiple sclerosis and ulcerative colitis. As such, other nodes in the pathway can be probed for alternative therapeutic candidates. As S1P elicits its function in an ‘outside-in’ fashion, targeting the transporter, Spns2, which is upstream of the receptors, is of great interest. To support our medicinal chemistry campaign to inhibit S1P transport, we developed a mammalian cell-based assay. In this protocol, Spns2 inhibition is assessed by treating HeLa, U-937, and THP-1 cells with inhibitors and S1P exported in the extracellular milieu is quantified by LC-MS/MS. Our studies demonstrated that the amount of S1P in the media in inversely proportional to inhibitor concentration. The details of our investigations are described herein.</p></div>","PeriodicalId":21764,"journal":{"name":"SLAS Discovery","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10665319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
HTS driven by fluorescence lifetime detection of FRET identifies activators and inhibitors of cardiac myosin FRET荧光寿命检测驱动的HTS识别心肌肌球蛋白的激活剂和抑制剂
IF 3.1 4区 生物学
SLAS Discovery Pub Date : 2023-07-01 DOI: 10.1016/j.slasd.2023.06.001
JM Muretta , D Rajasekaran , Y Blat , S Little , M Myers , C Nair , B Burdekin , SL Yuen , N Jimenez , P Guhathakurta , A Wilson , AR Thompson , N Surti , D Connors , P Chase , D Harden , CM Barbieri , L Adam , DD Thomas
{"title":"HTS driven by fluorescence lifetime detection of FRET identifies activators and inhibitors of cardiac myosin","authors":"JM Muretta ,&nbsp;D Rajasekaran ,&nbsp;Y Blat ,&nbsp;S Little ,&nbsp;M Myers ,&nbsp;C Nair ,&nbsp;B Burdekin ,&nbsp;SL Yuen ,&nbsp;N Jimenez ,&nbsp;P Guhathakurta ,&nbsp;A Wilson ,&nbsp;AR Thompson ,&nbsp;N Surti ,&nbsp;D Connors ,&nbsp;P Chase ,&nbsp;D Harden ,&nbsp;CM Barbieri ,&nbsp;L Adam ,&nbsp;DD Thomas","doi":"10.1016/j.slasd.2023.06.001","DOIUrl":"10.1016/j.slasd.2023.06.001","url":null,"abstract":"<div><p>Small molecules that bind to allosteric sites on target proteins to alter protein function are highly sought in drug discovery. High-throughput screening (HTS) assays are needed to facilitate the direct discovery of allosterically active compounds. We have developed technology for high-throughput time-resolved fluorescence lifetime detection of fluorescence resonance energy transfer (FRET), which enables the detection of allosteric modulators by monitoring changes in protein structure. We tested this approach at the industrial scale by adapting an allosteric FRET sensor of cardiac myosin to high-throughput screening (HTS), based on technology provided by Photonic Pharma and the University of Minnesota, and then used the sensor to screen 1.6 million compounds in the HTS facility at Bristol Myers Squibb. The results identified allosteric activators and inhibitors of cardiac myosin that do not compete with ATP binding, demonstrating high potential for FLT-based drug discovery.</p></div>","PeriodicalId":21764,"journal":{"name":"SLAS Discovery","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422832/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9994681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Mathematical relationships between control group variability and assay quality metrics 对照组变异性与测定质量指标之间的数学关系
IF 3.1 4区 生物学
SLAS Discovery Pub Date : 2023-07-01 DOI: 10.1016/j.slasd.2023.02.003
Andrew Lim
{"title":"Mathematical relationships between control group variability and assay quality metrics","authors":"Andrew Lim","doi":"10.1016/j.slasd.2023.02.003","DOIUrl":"10.1016/j.slasd.2023.02.003","url":null,"abstract":"<div><p>Assay quality metrics have been used in various high-throughput screening (HTS) campaigns to indicate assay quality. Z’-factor has become one of the most widely used metrics, along with other metrics such as standardised mean difference (SSMD). In using these metrics, it is important to understand how these metrics can be impacted by the separation between control groups (indicated by the HZ ratio) and the coefficient of variation (CV) within each control group. In this paper, several mathematical equations have been derived to understand the relationship between assay quality metrics (such as Z’-factor and SSMD) and control group datasets (summarised by CV and HZ). These equations increase our understanding of the factors that improve assay quality metrics, thus providing a quantitative means to visualise how affecting control groups can impact assay quality metrics.</p></div>","PeriodicalId":21764,"journal":{"name":"SLAS Discovery","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10146422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Label-free high-throughput screening via acoustic ejection mass spectrometry put into practice 采用声射质谱法进行无标签高通量筛选
IF 3.1 4区 生物学
SLAS Discovery Pub Date : 2023-07-01 DOI: 10.1016/j.slasd.2023.04.001
Martin Winter , Roman P. Simon , Tim T. Häbe, Robert Ries, Yuting Wang, David Kvaskoff, Amaury Fernández-Montalván, Andreas H. Luippold, Frank H. Büttner, Wolfgang Reindl
{"title":"Label-free high-throughput screening via acoustic ejection mass spectrometry put into practice","authors":"Martin Winter ,&nbsp;Roman P. Simon ,&nbsp;Tim T. Häbe,&nbsp;Robert Ries,&nbsp;Yuting Wang,&nbsp;David Kvaskoff,&nbsp;Amaury Fernández-Montalván,&nbsp;Andreas H. Luippold,&nbsp;Frank H. Büttner,&nbsp;Wolfgang Reindl","doi":"10.1016/j.slasd.2023.04.001","DOIUrl":"10.1016/j.slasd.2023.04.001","url":null,"abstract":"<div><p>Acoustic droplet ejection-open port interface-mass spectrometry (ADE-OPI-MS) is a novel label-free analytical technique, promising to become a versatile readout for high-throughput screening (HTS) applications. The recent introduction of ADE-OPI-MS devices to the laboratory equipment market, paired with their compatibility with laboratory automation platforms, should facilitate the adoption of this technology by a broader community. Towards this goal, instrument robustness in the context of HTS campaigns - where up to millions of samples in complex matrices are tested in a short time frame - represents a major challenge, which explains the absence of detailed literature reports on this subject. Here, we present the results of our first fully automated HTS campaign, based on the ADE-OPI-MS technology, aiming to identify inhibitors of a metabolic enzyme in a &gt;1 million compound library. The report encompasses the assay development and validation steps, as well as the adaptation for HTS requirements, where refinement of the capillary cleaning concept was crucial for final success. Altogether, our study unequivocally demonstrates the applicability of the ADE-OPI-MS technology for HTS-based drug discovery.</p></div>","PeriodicalId":21764,"journal":{"name":"SLAS Discovery","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9846151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Evaluating the affinity and kinetics of small molecule glycomimetics for human and mouse galectin-3 using surface plasmon resonance 利用表面等离子体共振评价人和小鼠半乳糖凝集素-3的小分子糖仿制品的亲和力和动力学
IF 3.1 4区 生物学
SLAS Discovery Pub Date : 2023-07-01 DOI: 10.1016/j.slasd.2023.03.005
Henry Kim , Nathalie Weidner , Céline Ronin , Emmanuel Klein , James A. Roper , Barbro Kahl-Knutson , Kristoffer Peterson , Hakon Leffler , Ulf J. Nilsson , Anders Pedersen , Fredrik R. Zetterberg , Robert J. Slack
{"title":"Evaluating the affinity and kinetics of small molecule glycomimetics for human and mouse galectin-3 using surface plasmon resonance","authors":"Henry Kim ,&nbsp;Nathalie Weidner ,&nbsp;Céline Ronin ,&nbsp;Emmanuel Klein ,&nbsp;James A. Roper ,&nbsp;Barbro Kahl-Knutson ,&nbsp;Kristoffer Peterson ,&nbsp;Hakon Leffler ,&nbsp;Ulf J. Nilsson ,&nbsp;Anders Pedersen ,&nbsp;Fredrik R. Zetterberg ,&nbsp;Robert J. Slack","doi":"10.1016/j.slasd.2023.03.005","DOIUrl":"10.1016/j.slasd.2023.03.005","url":null,"abstract":"<div><p>Galectin-3 is a beta-galactoside-binding mammalian lectin that is one of a 15-member galectin family that can bind several cell surface glycoproteins via its carbohydrate recognition domain (CRD). As a result, it can influence a range of cellular processes including cell activation, adhesion and apoptosis. Galectin-3 has been implicated in various diseases, including fibrotic disorders and cancer, and is now being therapeutically targeted by both small and large molecules. Historically, the screening and triaging of small molecule glycomimetics that bind to the galectin-3 CRD has been completed in fluorescence polarisation (FP) assays to determine <em>K<sub>D</sub></em> values. Surface plasmon resonance (SPR) has not been widely used for compound screening and in this study it was used to compare human and mouse galectin-3 affinity measures between FP and SPR, as well as investigate compound kinetics. The <em>K<sub>D</sub></em> estimates for a set of compounds selected from mono- and di-saccharides with affinities across a 550-fold range, correlated well between FP and SPR assay formats for both human and mouse galectin-3. Increases in affinity for compounds binding to human galectin-3 were driven by changes in both <em>k<sub>on</sub></em> and <em>k<sub>off</sub></em> whilst for mouse galectin-3 this was primarily due to <em>k<sub>on</sub></em>. The reduction in affinity observed between human to mouse galectin-3 was also comparable between assay formats. SPR has been shown to be a viable alternative to FP for early drug discovery screening and determining <em>K<sub>D</sub></em> values. In addition, it can also provide early kinetic characterisation of small molecule galectin-3 glycomimetics with robust <em>k<sub>on</sub></em> and <em>k<sub>off</sub></em> values generated in a high throughput manner.</p></div>","PeriodicalId":21764,"journal":{"name":"SLAS Discovery","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9789149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Fluorescent probe for the identification of potent inhibitors of the macrophage infectivity potentiator (Mip) protein of Burkholderia pseudomallei 伪伯克氏菌巨噬细胞感染增强因子(Mip)蛋白强效抑制剂的荧光探针鉴定
IF 3.1 4区 生物学
SLAS Discovery Pub Date : 2023-07-01 DOI: 10.1016/j.slasd.2023.03.004
Nicolas Julian Scheuplein , Theresa Lohr , Mirella Vivoli Vega , Dyan Ankrett , Florian Seufert , Lukas Kirchner , Nicholas J. Harmer , Ulrike Holzgrabe
{"title":"Fluorescent probe for the identification of potent inhibitors of the macrophage infectivity potentiator (Mip) protein of Burkholderia pseudomallei","authors":"Nicolas Julian Scheuplein ,&nbsp;Theresa Lohr ,&nbsp;Mirella Vivoli Vega ,&nbsp;Dyan Ankrett ,&nbsp;Florian Seufert ,&nbsp;Lukas Kirchner ,&nbsp;Nicholas J. Harmer ,&nbsp;Ulrike Holzgrabe","doi":"10.1016/j.slasd.2023.03.004","DOIUrl":"10.1016/j.slasd.2023.03.004","url":null,"abstract":"<div><p>The macrophage infectivity potentiator (Mip) protein belongs to the immunophilin superfamily. This class of enzymes catalyzes the interconversion between the <em>cis</em> and <em>trans</em> configuration of proline-containing peptide bonds. Mip has been shown to be important for the virulence of a wide range of pathogenic microorganisms, including the Gram-negative bacterium <em>Burkholderia pseudomallei</em>. Small molecules derived from the natural product rapamycin, lacking its immunosuppression-inducing moiety, inhibit Mip's peptidyl-prolyl <em>cis</em>-<em>trans</em> isomerase (PPIase) activity and lead to a reduction in pathogen load <em>in vitro</em>. Here, a fluorescence polarization assay (FPA) to enable the screening and effective development of BpMip inhibitors was established. A fluorescent probe was prepared, derived from previous pipecolic scaffold Mip inhibitors labeled with fluorescein. This probe showed moderate affinity for BpMip and enabled a highly robust FPA suitable for screening large compound libraries with medium- to high-throughput (Z factor ∼ 0.89) to identify potent new inhibitors. The FPA results are consistent with data from the protease-coupled PPIase assay. Analysis of the temperature dependence of the probe's binding highlighted that BpMip's ligand binding is driven by enthalpic rather than entropic effects. This has considerable consequences for the use of low-temperature kinetic assays.</p></div>","PeriodicalId":21764,"journal":{"name":"SLAS Discovery","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9845386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A novel fluorogenic reporter substrate for 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-2 (PLCγ2): Application to high-throughput screening for activators to treat Alzheimer's disease 一种新的1-磷脂酰肌醇4,5-二磷酸磷酸二酯酶γ -2 (plc - γ2)荧光报告底物:用于阿尔茨海默病激活剂的高通量筛选
IF 3.1 4区 生物学
SLAS Discovery Pub Date : 2023-06-01 DOI: 10.1016/j.slasd.2023.03.003
Ramya Visvanathan , Tadanobu Utsuki , Daniel E. Beck , Emma Lendy , Kuai-lin Sun , Yinghui Liu , Kirk W. Hering , Andrew Mesecar , Zhong-Yin Zhang , Karson S. Putt
{"title":"A novel fluorogenic reporter substrate for 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-2 (PLCγ2): Application to high-throughput screening for activators to treat Alzheimer's disease","authors":"Ramya Visvanathan ,&nbsp;Tadanobu Utsuki ,&nbsp;Daniel E. Beck ,&nbsp;Emma Lendy ,&nbsp;Kuai-lin Sun ,&nbsp;Yinghui Liu ,&nbsp;Kirk W. Hering ,&nbsp;Andrew Mesecar ,&nbsp;Zhong-Yin Zhang ,&nbsp;Karson S. Putt","doi":"10.1016/j.slasd.2023.03.003","DOIUrl":"10.1016/j.slasd.2023.03.003","url":null,"abstract":"<div><p>A rare coding variant in PLCγ2 (P522R) expressed in microglia induces a mild activation of enzymatic activity when compared to wild-type. This mutation is reported to be protective against the cognitive decline associated with late-onset Alzheimer's disease (LOAD) and therefore, activation of wild-type PLCγ2 has been suggested as a potential therapeutic target for the prevention and treatment of LOAD. Additionally, PLCγ2 has been associated with other diseases such as cancer and some autoimmune disorders where mutations with much greater increases in PLCγ2 activity have been identified. Here, pharmacological inhibition may provide a therapeutic effect. In order to facilitate our investigation of the activity of PLCγ2, we developed an optimized fluorogenic substrate to monitor enzymatic activity in aqueous solution. This was accomplished by first exploring the spectral properties of various “turn-on” fluorophores. The most promising turn-on fluorophore was incorporated into a water-soluble PLCγ2 reporter substrate, which we named C8CF3-coumarin. The ability of PLCγ2 to enzymatically process C8CF3-coumarin was confirmed, and the kinetics of the reaction were determined. Reaction conditions were optimized to identify small molecule activators, and a pilot screen of the Library of Pharmacologically Active Compounds 1280 (LOPAC<sub>1280</sub>) was performed with the goal of identifying small molecule activators of PLCγ2. The optimized screening conditions allowed identification of potential PLCγ2 activators and inhibitors, thus demonstrating the feasibility of this approach for high-throughput screening.</p></div>","PeriodicalId":21764,"journal":{"name":"SLAS Discovery","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9b/5f/nihms-1905403.PMC10251139.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9596188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a high-throughput TR-FRET screening assay for LAG-3/FGL1 interaction 高通量TR-FRET筛选LAG-3/FGL1相互作用试验的开发
IF 3.1 4区 生物学
SLAS Discovery Pub Date : 2023-06-01 DOI: 10.1016/j.slasd.2023.04.003
Somaya A. Abdel-Rahman , Longfei Zhang , Moustafa T. Gabr
{"title":"Development of a high-throughput TR-FRET screening assay for LAG-3/FGL1 interaction","authors":"Somaya A. Abdel-Rahman ,&nbsp;Longfei Zhang ,&nbsp;Moustafa T. Gabr","doi":"10.1016/j.slasd.2023.04.003","DOIUrl":"10.1016/j.slasd.2023.04.003","url":null,"abstract":"<div><p>Lymphocyte activation gene 3 (LAG-3) is a negative immune checkpoint and a key regulator of immune homeostasis with multiple biological activities related to T-cell functions. Fibrinogen-like protein 1 (FGL1) is a major LAG-3 functional ligand that is upregulated in various human cancers. LAG-3 positive T cells bind FGL1 expressed by cancer cells, which inhibits T-cell activation and cytokine secretion <em>via</em> indirect blocking of T cell receptor (TCR) signaling. High expression of LAG-3 and FGL1 in patients with solid tumors is associated with drug resistance and decreased survival in response to FDA-approved immune checkpoint inhibitors. Therefore, targeting the LAG-3/FGL1 pathway represents a promising therapeutic strategy to maximize the number of patients benefiting from checkpoint blockade therapy. However, there are no small molecules in existence that target LAG-3/FGL1 interaction. Herein, we report a time-resolved fluorescence resonance energy transfer (TR-FRET) assay to evaluate the ability of small molecules to inhibit LAG-3/FGL1 interaction. We further demonstrate the implementation of the developed assay in screening chemical libraries of small molecules from the NCI Diversity Set VII, FDA-approved drugs, and a focused library of NF-κB modulators. This work will pave the way for drug discovery efforts focused on therapeutic targeting of LAG-3/FGL1 interaction using small molecules.</p></div>","PeriodicalId":21764,"journal":{"name":"SLAS Discovery","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9598839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信