Christopher Fotsch , Debaleena Basu , Ryan Case , Qing Chen , Pratibha C. Koneru , Mei-Chu Lo , Rachel Ngo , Pooja Sharma , Amit Vaish , Xiang Yi , Stephan G. Zech , Peter Hodder
{"title":"Creating a more strategic small molecule biophysical hit characterization workflow","authors":"Christopher Fotsch , Debaleena Basu , Ryan Case , Qing Chen , Pratibha C. Koneru , Mei-Chu Lo , Rachel Ngo , Pooja Sharma , Amit Vaish , Xiang Yi , Stephan G. Zech , Peter Hodder","doi":"10.1016/j.slasd.2024.100159","DOIUrl":null,"url":null,"abstract":"<div><p>To confirm target engagement of hits from our high-throughput screening efforts, we ran biophysical assays on several hundreds of hits from 15 different high-throughput screening campaigns. Analyzing the biophysical assay results from these screening campaigns led us to conclude that we could be more strategic in our biophysical analysis of hits by first confirming activity in a thermal shift assay (TSA) and then confirming activity in either a surface plasmon resonance (SPR) assay or a temperature-related intensity change (TRIC) assay. To understand how this new workflow shapes the quality of the final hits, we compared TSA/SPR or TSA/TRIC confirmed and unconfirmed hits to one another using four measures of compound quality: quantitative estimate of drug-likeness (QED), Pan-Assay Interference Compounds (PAINS), promiscuity, and aqueous solubility. In general, we found that the biophysically confirmed hits performed better in the compound quality metrics than the unconfirmed hits, demonstrating that our workflow not only confirmed target engagement of the hits but also enriched for higher quality hits.</p></div>","PeriodicalId":21764,"journal":{"name":"SLAS Discovery","volume":"29 4","pages":"Article 100159"},"PeriodicalIF":2.7000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472555224000212/pdfft?md5=389ec9b1863fb13b54ef5a3823355f2d&pid=1-s2.0-S2472555224000212-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Discovery","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472555224000212","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
To confirm target engagement of hits from our high-throughput screening efforts, we ran biophysical assays on several hundreds of hits from 15 different high-throughput screening campaigns. Analyzing the biophysical assay results from these screening campaigns led us to conclude that we could be more strategic in our biophysical analysis of hits by first confirming activity in a thermal shift assay (TSA) and then confirming activity in either a surface plasmon resonance (SPR) assay or a temperature-related intensity change (TRIC) assay. To understand how this new workflow shapes the quality of the final hits, we compared TSA/SPR or TSA/TRIC confirmed and unconfirmed hits to one another using four measures of compound quality: quantitative estimate of drug-likeness (QED), Pan-Assay Interference Compounds (PAINS), promiscuity, and aqueous solubility. In general, we found that the biophysically confirmed hits performed better in the compound quality metrics than the unconfirmed hits, demonstrating that our workflow not only confirmed target engagement of the hits but also enriched for higher quality hits.
期刊介绍:
Advancing Life Sciences R&D: SLAS Discovery reports how scientists develop and utilize novel technologies and/or approaches to provide and characterize chemical and biological tools to understand and treat human disease.
SLAS Discovery is a peer-reviewed journal that publishes scientific reports that enable and improve target validation, evaluate current drug discovery technologies, provide novel research tools, and incorporate research approaches that enhance depth of knowledge and drug discovery success.
SLAS Discovery emphasizes scientific and technical advances in target identification/validation (including chemical probes, RNA silencing, gene editing technologies); biomarker discovery; assay development; virtual, medium- or high-throughput screening (biochemical and biological, biophysical, phenotypic, toxicological, ADME); lead generation/optimization; chemical biology; and informatics (data analysis, image analysis, statistics, bio- and chemo-informatics). Review articles on target biology, new paradigms in drug discovery and advances in drug discovery technologies.
SLAS Discovery is of particular interest to those involved in analytical chemistry, applied microbiology, automation, biochemistry, bioengineering, biomedical optics, biotechnology, bioinformatics, cell biology, DNA science and technology, genetics, information technology, medicinal chemistry, molecular biology, natural products chemistry, organic chemistry, pharmacology, spectroscopy, and toxicology.
SLAS Discovery is a member of the Committee on Publication Ethics (COPE) and was published previously (1996-2016) as the Journal of Biomolecular Screening (JBS).