Jose Brea , Maria J. Varela , Geert A. Daudey , Maria I. Loza
{"title":"用于定性测定化学文库水溶性的高通量尼泊金测定法","authors":"Jose Brea , Maria J. Varela , Geert A. Daudey , Maria I. Loza","doi":"10.1016/j.slasd.2024.100149","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of the protocol reported in this work is the solubility profiling of large chemical libraries using nephelometry. This technique allows the qualitative classification of compounds as highly, moderately, or poorly water-soluble. The described methodology is not intended to yield quantitative solubility values of the studied compounds but can be used as a primary solubility assessment of large chemical libraries, to guide hit prioritization after High Throughput Screening (HTS) campaigns.</p></div>","PeriodicalId":21764,"journal":{"name":"SLAS Discovery","volume":"29 3","pages":"Article 100149"},"PeriodicalIF":2.7000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S247255522400011X/pdfft?md5=a9b754a03190a54dd2fb6bb4cd348956&pid=1-s2.0-S247255522400011X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"High-throughput nephelometry methodology for qualitative determination of aqueous solubility of chemical libraries\",\"authors\":\"Jose Brea , Maria J. Varela , Geert A. Daudey , Maria I. Loza\",\"doi\":\"10.1016/j.slasd.2024.100149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The purpose of the protocol reported in this work is the solubility profiling of large chemical libraries using nephelometry. This technique allows the qualitative classification of compounds as highly, moderately, or poorly water-soluble. The described methodology is not intended to yield quantitative solubility values of the studied compounds but can be used as a primary solubility assessment of large chemical libraries, to guide hit prioritization after High Throughput Screening (HTS) campaigns.</p></div>\",\"PeriodicalId\":21764,\"journal\":{\"name\":\"SLAS Discovery\",\"volume\":\"29 3\",\"pages\":\"Article 100149\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S247255522400011X/pdfft?md5=a9b754a03190a54dd2fb6bb4cd348956&pid=1-s2.0-S247255522400011X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SLAS Discovery\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S247255522400011X\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Discovery","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S247255522400011X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
High-throughput nephelometry methodology for qualitative determination of aqueous solubility of chemical libraries
The purpose of the protocol reported in this work is the solubility profiling of large chemical libraries using nephelometry. This technique allows the qualitative classification of compounds as highly, moderately, or poorly water-soluble. The described methodology is not intended to yield quantitative solubility values of the studied compounds but can be used as a primary solubility assessment of large chemical libraries, to guide hit prioritization after High Throughput Screening (HTS) campaigns.
期刊介绍:
Advancing Life Sciences R&D: SLAS Discovery reports how scientists develop and utilize novel technologies and/or approaches to provide and characterize chemical and biological tools to understand and treat human disease.
SLAS Discovery is a peer-reviewed journal that publishes scientific reports that enable and improve target validation, evaluate current drug discovery technologies, provide novel research tools, and incorporate research approaches that enhance depth of knowledge and drug discovery success.
SLAS Discovery emphasizes scientific and technical advances in target identification/validation (including chemical probes, RNA silencing, gene editing technologies); biomarker discovery; assay development; virtual, medium- or high-throughput screening (biochemical and biological, biophysical, phenotypic, toxicological, ADME); lead generation/optimization; chemical biology; and informatics (data analysis, image analysis, statistics, bio- and chemo-informatics). Review articles on target biology, new paradigms in drug discovery and advances in drug discovery technologies.
SLAS Discovery is of particular interest to those involved in analytical chemistry, applied microbiology, automation, biochemistry, bioengineering, biomedical optics, biotechnology, bioinformatics, cell biology, DNA science and technology, genetics, information technology, medicinal chemistry, molecular biology, natural products chemistry, organic chemistry, pharmacology, spectroscopy, and toxicology.
SLAS Discovery is a member of the Committee on Publication Ethics (COPE) and was published previously (1996-2016) as the Journal of Biomolecular Screening (JBS).