Gha-Young Kim, Junhyuk Jang, Minsoo Lee, Jin-Seop Kim
{"title":"Effect of Chloride Ions on Electrochemical Behavior of Canister Materials","authors":"Gha-Young Kim, Junhyuk Jang, Minsoo Lee, Jin-Seop Kim","doi":"10.1155/2022/8577144","DOIUrl":"https://doi.org/10.1155/2022/8577144","url":null,"abstract":"Various canister candidate materials (SS316L, Ti-Gr.2, Alloy 22, and Cu) were studied using groundwater at the Korea Atomic Energy Research Institute (KAERI) underground research tunnel (KURT), with the addition of chloride ions using different electrochemical techniques. The corrosion potential and corrosion current of test materials were obtained by the polarization measurement. The polarization measurements revealed that the addition of chloride ions was detrimental to the SS316L and Cu materials by increasing corrosion current, which is an indicator of corrosion rate. Impedance measurements and fitting analysis showed that the corrosion resistance of Cu was more than 10 times lower than that of other materials in the KURT groundwater solution containing 0.1 M of chloride ions.","PeriodicalId":21629,"journal":{"name":"Science and Technology of Nuclear Installations","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41670277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jung-Hoon Choi, Byeonggwan Lee, Ki-rak Lee, H. Kang, H. J. Eom, Seong-Sik Shin, Ga-Yeong Kim, Hwan-seo Park
{"title":"Characterization of Waste Generated from Nuclide Management Process in Waste Burden Minimization Technology for Spent Nuclear Fuel","authors":"Jung-Hoon Choi, Byeonggwan Lee, Ki-rak Lee, H. Kang, H. J. Eom, Seong-Sik Shin, Ga-Yeong Kim, Hwan-seo Park","doi":"10.1155/2022/4764825","DOIUrl":"https://doi.org/10.1155/2022/4764825","url":null,"abstract":"To reduce the environmental burden caused by the disposal of spent nuclear fuel, waste burden minimization technology is currently being developed at the Korea Atomic Energy Research Institute. The technology includes a nuclide management process that can maximize disposal efficiency by selectively separating and collecting major nuclides in spent nuclear fuel. To manufacture a waste form of high durability, the characteristics of the waste generated during the process should be evaluated. In this study, the physical, radiological, and thermal characteristics of the waste and waste forms for major nuclides (Cs, Sr, I, transuranic/rare earth, and Tc/Se) generated in the nuclide management process were analyzed. In the case of Cs nuclides, characterization was conducted according to the capture rate of the adsorbent in the high-temperature heat treatment process; meanwhile, in the case of Sr nuclides, characterization was performed by considering the ratio of similar nuclides in the chlorination process. For I nuclide, analysis was performed based on the available waste form, and for TRU/RE and Tc/Se nuclides, analysis was performed by considering chlorination and mid-temperature heat treatment. The radioactivity and heat generation rate of each waste and waste form were evaluated over a period of 1,000 years. The results of this study could be used to derive the centerline temperature for the thermal stability evaluation of waste forms and for the feasibility evaluation of each disposal system considered in the waste burden minimization technology.","PeriodicalId":21629,"journal":{"name":"Science and Technology of Nuclear Installations","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48172368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Pinem, S. Dibyo, W. Luthfi, V. Wardhani, D. Hartanto
{"title":"An Improved Steady-State and Transient Analysis of the RSG-GAS Reactor Core under RIA Conditions Using MTR-DYN and EUREKA-2/RR Codes","authors":"S. Pinem, S. Dibyo, W. Luthfi, V. Wardhani, D. Hartanto","doi":"10.1155/2022/6030504","DOIUrl":"https://doi.org/10.1155/2022/6030504","url":null,"abstract":"Steady-state and transient analysis of reactor core under Reactivity-Initiated Accident (RIA) conditions are important for reactor operation safety. The reactor dynamics are influenced by neutronic and thermal-hydraulic aspects of the core. In this study, steady-state and transient analysis under RIA conditions of the RSG-GAS multipurpose reactor was carried out using MTR-DYN and EUREKA-2/RR programs. Neutronic calculations were performed using a few group cross-sections generated by Serpent 2 with the latest cross-section data ENDF/B-VIII.0. Steady-state conditions were carried out with a nominal power of 30 MW, while transient under RIA conditions occurred because the control rod was pulled too quickly while the reactor operated. These transient RIA conditions were performed for two cases, during start-up with an initial power of 1 W, and within power range with an initial power of 1 MW. Thermal-hydraulic parameters considered in this study are reactor power, the temperature of the fuel, cladding, and coolant. The calculated maximum fuel temperature at a steady state is 126.02°C. Meanwhile, the calculated maximum fuel temperature during RIA conditions at the initial power of 1 W and 1 MW are 64.38°C and 137.14°C, respectively. There are no significant differences in thermal-hydraulic parameters between each used program. The thermal-hydraulic parameters such as the maximum temperature of the coolant, cladding, and fuel under this postulated RIA condition are within the acceptable reactor operation safety limits.","PeriodicalId":21629,"journal":{"name":"Science and Technology of Nuclear Installations","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49574823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gaojun Liu, Weijie Fan, Feng-lei Li, Gaixia Wang, Dongdong You
{"title":"Remaining Useful Life Prediction of Nuclear Power Machinery Based on an Exponential Degradation Model","authors":"Gaojun Liu, Weijie Fan, Feng-lei Li, Gaixia Wang, Dongdong You","doi":"10.1155/2022/9895907","DOIUrl":"https://doi.org/10.1155/2022/9895907","url":null,"abstract":"Aiming at solving the problems of small fault data samples and insufficient remaining useful life (RUL) prediction accuracy of nuclear power machinery, a method based on an exponential degradation model is proposed to predict the RUL of equipment after the failure warning system alarm. After data preprocessing, time-domain feature extraction, selection, and dimensionality reduction fusion of multiple degradation variables, the exponential degradation model is constructed based on the Bayesian process, and prior information is used. As an application, the RUL of a nuclear power turbine was calculated based on actual monitoring data, the \u0000 \u0000 α\u0000 −\u0000 λ\u0000 \u0000 precision curve was used to evaluate the prediction effect, and the RUL prediction results verified the effectiveness of the proposed method.","PeriodicalId":21629,"journal":{"name":"Science and Technology of Nuclear Installations","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48007101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study on the Dispersion of Radionuclides under Different Hydrological Conditions of Spent Fuel Shipping in Daya Bay","authors":"Liwei Chen, Wei Chen, Jiazhen Lin, Chunhua Chen, Yalin Luo, Longlong Tao","doi":"10.1155/2022/7265821","DOIUrl":"https://doi.org/10.1155/2022/7265821","url":null,"abstract":"The radionuclide dispersion in coastal water is mainly controlled by the water flow and tidal effect. Tracing and analysis of radioactive pollutant dispersion in coastal water can predict distribution of radionuclide under marine transportation accident of spent fuel. In this work, factors such as continuous emission, radioactive decay, and water depth are considered, and a hydrodynamic model of radionuclide dispersion based on shallow water equations is established to simulate the dispersion of the radioactive pollutant in coastal waters under different hydrological conditions. As far as the characteristics of the radionuclide dispersion in coastal water are concerned, the simulation of pollutants by the hydrodynamic model is in good agreement with the work of Bailly du Bois et al., which validated the correctness of this model. The model has been applied to simulate the distribution of radionuclides in coastal water following a marine transport accident of spent fuel near Daya Bay Nuclear Power Plant in China. The simulation reveals that the distribution features are significantly affected by different hydrological conditions. In addition to limiting the diffusion range, the vortex effect can also cause the accumulation of radionuclides near the vortex, which helps to provide more practical information for nuclear emergency decision makers.","PeriodicalId":21629,"journal":{"name":"Science and Technology of Nuclear Installations","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49473921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Uranium Recovery from Phosphates for Self-Sufficient Nuclear Power in the Eastern Mediterranean","authors":"N. Haidar","doi":"10.1155/2022/3985408","DOIUrl":"https://doi.org/10.1155/2022/3985408","url":null,"abstract":"Production of phosphate fertilizers (PF), without uranium recovery, amounts to dispersing uranium compounds on agricultural fields. These compounds are naturally hidden in phosphate rock deposits prior to processing. Such a dispersion is a cumulative environmental damage, that may become rather catastrophic in few hundred years, under the current rates & impurities of phosphate fertilization of agricultural lands. It is also an avoidable irreversible waste of one of the world’s major energy resources. This study demonstrates quantitatively the low impact of U costs on the nuclear power generation costs, which happens, so far, to be a main reason for nonrecovery of uranium from the present PF industry. It reports on novel procedures for (i) estimating the required U feed to nuclear power plants (NPPs), (ii) pricing U as a function of its cumulative world production, and (iii) for quantifying U accumulation in phosphate fertilized lands. We also demonstrate that countries of the eastern Mediterranean can, in the long run, become collectively U partially self-sufficient, by recovering U from their phosphate resources, to power 13.2% of their entire electric energy generation contemporary needs.","PeriodicalId":21629,"journal":{"name":"Science and Technology of Nuclear Installations","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43740710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fang Liu, Yuanyuan Zhou, Wencheng Song, Hongzhi Wang
{"title":"Cold Atmospheric Plasma Inhibits the Proliferation of CAL-62 Cells through the ROS-Mediated PI3K/Akt/mTOR Signaling Pathway","authors":"Fang Liu, Yuanyuan Zhou, Wencheng Song, Hongzhi Wang","doi":"10.1155/2022/3884695","DOIUrl":"https://doi.org/10.1155/2022/3884695","url":null,"abstract":"This study aimed to investigate the inhibitory effects of cold atmospheric plasma (CAP) on anaplastic thyroid cancer cells (CAL-62 cells) and to reveal the molecular mechanism. The effects of CAP on CAL-62 cells were evaluated by cell viability, superoxide dismutase activity, apoptosis, cell cycle, and protein expression level, and the role of reactive oxygen species (ROS) produced by plasma was also investigated. The results showed that CAP dose-dependently inhibited cell viability and promotes cell apoptosis and G2/M arrest by increasing cell ROS levels. The activity of superoxide dismutase (SOD) was enhanced by CAP which indicated that the antioxidant system of the cell was activated. Additionally, the ROS produced by CAP can inhibit CAL-62 cell proliferation by inhibiting the PI3K/Akt/mTOR signaling pathway. Therefore, these findings will provide useful support for the application of CAP for treating anaplastic thyroid cancer.","PeriodicalId":21629,"journal":{"name":"Science and Technology of Nuclear Installations","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48734796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Information Granulated Based SVM Approach for Anomaly Detection of Main Transformers in Nuclear Power Plants","authors":"Wenmin Yu, Ren Yu, Cheng Li","doi":"10.1155/2022/3931374","DOIUrl":"https://doi.org/10.1155/2022/3931374","url":null,"abstract":"The main transformer is critical equipment for economically generating electricity in nuclear power plants (NPPs). Dissolved gas analysis (DGA) is an effective means of monitoring the transformer condition, and its parameters can reflect the transformer operating condition. This study introduces a framework for main transformer predictive-based maintenance management. A condition prediction method based on the online support vector machine (SVM) regression model is proposed, with the input data being preprocessed using the information granulation method, and the parameters of the model are optimized using the particle swarm optimization (PSO) algorithm. Using DGA data from the NPP data acquisition system, two experiments are designed to verify the trend tracing and prediction envelope ability of main transformers installed in NPPs with different operating ages of the proposed model. Finally, how to use this framework to benefit the maintenance plan of the main transformer is summarized.","PeriodicalId":21629,"journal":{"name":"Science and Technology of Nuclear Installations","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46517841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigation of Loss of Feedwater (LOFW) Accident in the APR-1400 Using Fault Tree Analysis","authors":"M. Zubair","doi":"10.1155/2022/4666161","DOIUrl":"https://doi.org/10.1155/2022/4666161","url":null,"abstract":"Nuclear power plants play a significant role in the contribution of electricity generation on a global scale. Various reactor designs have advantages over others in different aspects. APR-1400 is a pressurized water reactor that is deemed safe due to the redundancy and independence of the multiple safety systems. Probabilistic safety assessment (PSA) is well known for its effectiveness in the representation of risk and safety analysis of the systems in a nuclear power plant. It provides different scenarios of system failure and accident progression via fault tree analysis. A loss of feedwater (LOFW) accident may occur due to numerous reasons such as spurious closure of valves, component failure of heaters, pumps, tanks, or a loss of offsite power (LOOP) event. In the present research, a methodology has been developed that aims to investigate different factors contributing to the loss of feedwater. This research also aims to analyze LOFW accidents by developing fault tree models for the main feedwater system of the APR-1400 to identify the basic events, which may lead to a loss of feedwater accidents. The results of the top event probabilities, risk decrease factor (RDF), risk increase factor (RIF), minimal cut sets (MCS), basic event probabilities, and sensitivity analysis were compared with the WASH-1400 database. It has been found that the control valve (V04) and main feedwater isolation valve (V05) have more contribution to the LOFW accident. The common cause failure (CCF) analysis has been carried out, and it was found that the flow toward the check valve and steam generator are most critical for CCF.","PeriodicalId":21629,"journal":{"name":"Science and Technology of Nuclear Installations","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45154876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fangfang Zhang, Nana Li, Di Zhu, R. Xiao, Weichao Liu, R. Tao
{"title":"Influence of Weak Compressibility on the Hydrodynamic Performance Evaluation of Pump Turbines in the Pump Mode","authors":"Fangfang Zhang, Nana Li, Di Zhu, R. Xiao, Weichao Liu, R. Tao","doi":"10.1155/2022/3544436","DOIUrl":"https://doi.org/10.1155/2022/3544436","url":null,"abstract":"In general, weak compressibility is one of the properties of liquids. That is, in actual operation of hydraulic machinery, the flow is weakly compressible. However, the influence of weak compressibility is often neglected in usual numerical simulation, which makes the simulation results different from the experimental results. Based on the Computational Fluid Dynamics (CFD) solver and model test rig, by means of mutual verification between numerical simulation and experiment, the fitting degree between numerical results and experimental results before and after considering weak compressibility is compared and analyzed in this paper; it is obtained that the numerical results is closer to the experimental results after considering the weak compressibility. In addition, velocity field of pump turbines, head loss of main components, and the change of entropy yield are analyzed and reasons for numerical value being closer to the experimental value after considering weak compressibility of fluid are summarized and analyzed. It is proved that the consideration of weak compressibility is of great significance to improve the accuracy of results in the numerical simulation of pump turbines.","PeriodicalId":21629,"journal":{"name":"Science and Technology of Nuclear Installations","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42854701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}