Zhixue Chen , Lin Xu , Yejv Yuan , Si Zhang , Ruyi Xue
{"title":"Metabolic crosstalk between platelets and cancer: Mechanisms, functions, and therapeutic potential","authors":"Zhixue Chen , Lin Xu , Yejv Yuan , Si Zhang , Ruyi Xue","doi":"10.1016/j.semcancer.2025.02.001","DOIUrl":"10.1016/j.semcancer.2025.02.001","url":null,"abstract":"<div><div>Platelets, traditionally regarded as passive mediators of hemostasis, are now recognized as pivotal regulators in the tumor microenvironment, establishing metabolic feedback loops with tumor and immune cells. Tumor-derived signals trigger platelet activation, which induces rapid metabolic reprogramming, particularly glycolysis, to support activation-dependent functions such as granule secretion, morphological changes, and aggregation. Beyond self-regulation, platelets influence the metabolic processes of adjacent cells. Through direct mitochondrial transfer, platelets reprogram tumor and immune cells, promoting oxidative phosphorylation. Additionally, platelet-derived cytokines, granules, and extracellular vesicles drive metabolic alterations in immune cells, fostering suppressive phenotypes that facilitate tumor progression. This review examines three critical aspects: (1) the distinctive metabolic features of platelets, particularly under tumor-induced activation; (2) the metabolic crosstalk between activated platelets and other cellular components; and (3) the therapeutic potential of targeting platelet metabolism to disrupt tumor-promoting networks. By elucidating platelet metabolism, this review highlights its essential role in tumor biology and its therapeutic implications.</div></div>","PeriodicalId":21594,"journal":{"name":"Seminars in cancer biology","volume":"110 ","pages":"Pages 65-82"},"PeriodicalIF":12.1,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143425755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unexpected links between cancer and telomere state","authors":"Alessio Lanna","doi":"10.1016/j.semcancer.2025.01.006","DOIUrl":"10.1016/j.semcancer.2025.01.006","url":null,"abstract":"<div><div>Eukaryotes possess chromosome ends known as telomeres. As telomeres shorten, organisms age, a process defined as senescence. Although uncontrolled telomere lengthening has been naturally connected with cancer developments and immortalized state, many cancers are instead characterized by extremely short, genomically unstable telomeres that may hide cancer cells from immune attack. By contrast, other malignancies feature extremely long telomeres due to absence of ‘shelterin’ end cap protecting factors. The reason for rampant telomere extension in these cancers had remained elusive. Hence, while telomerase supports tumor progression and escape in cancers with very short telomeres, it is possible that different - transfer based or alternative - lengthening pathways be involved in the early stage of tumorigenesis, when telomere length is intact. In this Review, I hereby discuss recent discoveries in the field of telomeres and highlight unexpected links connecting cancer and telomere state. We hope these parallelisms may inform new therapies to eradicate cancers.</div></div>","PeriodicalId":21594,"journal":{"name":"Seminars in cancer biology","volume":"110 ","pages":"Pages 46-55"},"PeriodicalIF":12.1,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143403587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Inflammation and tumor immune escape in response to DNA damage","authors":"Naoe Taira Nihira , Rei Kudo , Tomohiko Ohta","doi":"10.1016/j.semcancer.2025.02.005","DOIUrl":"10.1016/j.semcancer.2025.02.005","url":null,"abstract":"<div><div>Senescent and cancer cells share common inflammatory characteristics, including factors of the senescence-associated secretory phenotype (SASP) and the cyclic GMP–AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. Inflammation in the tumor microenvironment not only provides an opportunity for immune cells to attack cancer cells, but also promotes cancer invasion and metastasis. Immune checkpoint molecule PD-L1 is transcriptionally induced by inflammation, and the immunological state of PD-L1-positive tumors influences the efficacy of Immune checkpoint inhibitors (ICIs). ICIs are effective against the PD-L1-positive “hot” tumors; however, the non-immunoactive “cold” tumors that express PD-L1 rarely respond to ICIs, suggesting that converting PD-L1-positive “cold” tumors into “hot” tumors would improve the efficacy of ICIs. To eliminate cancer via the innate immune system, a therapeutic strategy for manipulating inflammatory responses must be established. To date, the molecular mechanisms of inflammation-induced tumorigenesis are not yet fully understood. However, it is becoming clear that the regulatory mechanisms of inflammation in cancer via the cGAS-STING pathway play an important role in both cancer and sensescent cells. In this review, we focus on inflammation and immune escape triggered by DNA damage in cancer and senescent cells.</div></div>","PeriodicalId":21594,"journal":{"name":"Seminars in cancer biology","volume":"110 ","pages":"Pages 36-45"},"PeriodicalIF":12.1,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143403586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metabolic landscape and rewiring in normal hematopoiesis, leukemia and aging.","authors":"Hui Fang, Enze Yu, Chang Liu, Christy Eapen, Chunming Cheng, Tianxiang Hu","doi":"10.1016/j.semcancer.2025.02.003","DOIUrl":"https://doi.org/10.1016/j.semcancer.2025.02.003","url":null,"abstract":"<p><p>Recent advancements in metabolism research have demonstrated its critical roles in a lot of critical biological processes, including stemness maintenance, cell differentiation, proliferation, and function. Hematopoiesis is the fundamental cell differentiation process with the production of millions of red blood cells per second in carrying oxygen and white blood cells in fighting infection and cancers. The differentiation processes of hematopoietic stem and progenitor cells (HSPCs) are accompanied by significant metabolic reprogramming. In hematological malignancy, metabolic reprogramming is also essential to the malignant hematopoiesis processes. The metabolic rewiring is driven by distinct molecular mechanisms that meet the specific demands of different target cells. Leukemic cells, for instance, adopt unique metabolic profiles to support their heightened energy needs for survival and proliferation. Moreover, aging HSPCs exhibit altered energy consumption compared to their younger counterparts, often triggering protective mechanisms at the cellular level. In this review, we provide a comprehensive analysis of the metabolic processes involved in hematopoiesis and the metabolic rewiring that occurs under adverse conditions. In addition, we highlight current research directions and discuss the potential of targeting metabolic pathways for the management of hematological malignancies and aging.</p>","PeriodicalId":21594,"journal":{"name":"Seminars in cancer biology","volume":" ","pages":""},"PeriodicalIF":12.1,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143400005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study of immunosenescence in the occurrence and immunotherapy of gastrointestinal malignancies.","authors":"Daosong Dong, Xue Yu, Haoran Liu, Jingjing Xu, Jiayan Guo, Wei Guo, Xiang Li, Fei Wang, Dongyong Zhang, Kaiwei Liu, Yanbin Sun","doi":"10.1016/j.semcancer.2025.01.007","DOIUrl":"https://doi.org/10.1016/j.semcancer.2025.01.007","url":null,"abstract":"<p><p>In human beings heterogenous, pervasive and lethal malignancies of different parts of the gastrointestinal (GI) tract viz., tumours of the oesophagus, stomach, small intestine, colon, and rectum, represent gastrointestinal malignancies. Primary treatment modality for gastric cancer includes chemotherapy, surgical interventions, radiotherapy, monoclonal antibodies and inhibitors of angiogenesis. However, there is a need to improve upon the existing treatment modality due to associated adverse events and the development of resistance towards treatment. Additionally, age has been found to contribute to increasing the incidence of tumours due to immunosenescence-associated immunosuppression. Immunosenescence is the natural process of ageing, wherein immune cells as well as organs begin to deteriorate resulting in a dysfunctional or malfunctioning immune system. Accretion of senescent cells in immunosenescence results in the creation of a persistent inflammatory environment or inflammaging, marked with elevated expression of pro-inflammatory and immunosuppressive cytokines and chemokines. Perturbation in the T-cell pools and persistent stimulation by the antigens facilitate premature senility of the immune cells, and senile immune cells exacerbate inflammaging conditions and the inefficiency of the immune system to identify the tumour antigen. Collectively, these conditions contribute positively towards tumour generation, growth and eventually proliferation. Thus, activating the immune cells to distinguish the tumour cells from normal cells and invade them seems to be a logical strategy for the treatment of cancer. Consequently, various approaches to immunotherapy, viz., programmed death ligand-1 (PD-1) inhibitors, Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors etc are being extensively evaluated for their efficiency in gastric cancer. In fact, PD-1 inhibitors have been sanctioned as late late-line therapy modality for gastric cancer. The present review will focus on deciphering the link between the immune system and gastric cancer, and the alterations in the immune system that incur during the development of gastrointestinal malignancies. Also, the mechanism of evasion by tumour cells and immune checkpoints involved along with different approaches of immunotherapy being evaluated in different clinical trials will be discussed.</p>","PeriodicalId":21594,"journal":{"name":"Seminars in cancer biology","volume":" ","pages":""},"PeriodicalIF":12.1,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143391682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tao Jiang , Hua Jin , Xintong Ji , Xi Zheng , Cheng-Xiong Xu , Peng-Jun Zhang
{"title":"Drivers of centrosome abnormalities: Senescence progression and tumor immune escape","authors":"Tao Jiang , Hua Jin , Xintong Ji , Xi Zheng , Cheng-Xiong Xu , Peng-Jun Zhang","doi":"10.1016/j.semcancer.2025.01.008","DOIUrl":"10.1016/j.semcancer.2025.01.008","url":null,"abstract":"<div><div>Centrosome abnormalities are a distinguishing feature of cancer and play a role in the aging process. Cancer cells may evade the immune system by activating immune checkpoints, altering their surrounding microenvironment, abnormalities in antigen presentation and recognition, and metabolic reprogramming to inhibit T-cell activity, allowing cancer cells to survive and spread within the host. When the centrosomes are abnormally shaped or numbered, mitotic errors can occur, cellular senescence occurs, cell death occurs, genomic instability occurs, and aneuploidy forms, resulting in diseases such as cancer. The present study is exploring the strategy of research progress in which centrosome abnormalities contribute to the aging process in various different ways as well as fuel immune escape from cancer cells, providing a new direction for cancer immunotherapy.</div></div>","PeriodicalId":21594,"journal":{"name":"Seminars in cancer biology","volume":"110 ","pages":"Pages 56-64"},"PeriodicalIF":12.1,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143391680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dongqin Yang , Can Yang , Linlin Huang , Ming Guan , Chunhua Song
{"title":"Role of ubiquitination-driven metabolisms in oncogenesis and cancer therapy","authors":"Dongqin Yang , Can Yang , Linlin Huang , Ming Guan , Chunhua Song","doi":"10.1016/j.semcancer.2025.02.004","DOIUrl":"10.1016/j.semcancer.2025.02.004","url":null,"abstract":"<div><div>Ubiquitination represents one of the most critical post-translational modifications, comprising a multi-stage enzyme process that plays a pivotal role in a myriad of cellular biological activities. The deregulation of the processes of ubiquitination and deubiquitination is associated with the development of cancers and other diseases. This typescript reviews the impact of ubiquitination on metabolic processes, elucidating the regulatory functions of ubiquitination on pivotal enzymes within metabolic pathways in pathological contexts. It underscores the role of ubiquitination-driven metabolism disorders in the etiology of cancers, and oncogenesis, and highlights the potential therapeutic efficacy of targeting ubiquitination-driven enzymes in cancer metabolism, their combination with immune checkpoint inhibitors, and their clinical applications.</div></div>","PeriodicalId":21594,"journal":{"name":"Seminars in cancer biology","volume":"110 ","pages":"Pages 17-35"},"PeriodicalIF":12.1,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143391681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhipeng Cao , Zhilin Wang , Li Yang , Tian Li , Xueshu Tao , Xing Niu
{"title":"Reshaping the immune microenvironment and reversing immunosenescence by natural products: Prospects for immunotherapy in gastric cancer","authors":"Zhipeng Cao , Zhilin Wang , Li Yang , Tian Li , Xueshu Tao , Xing Niu","doi":"10.1016/j.semcancer.2025.02.002","DOIUrl":"10.1016/j.semcancer.2025.02.002","url":null,"abstract":"<div><div>Gastric cancer (GC) represents a global health-care challenge. Recent progress in immunotherapy has elicited attracted considerable attention as a viable treatment option through modulating the host immune system and unleashing pre-existing immunity, which has profoundly revolutionized oncology, especially GC. Nonetheless, low clinical response and intrinsic and acquired resistance remain persistently challenging. The microenvironment of GC comprising multifarious stromal cell types has remarkable immunosuppressive elements that may impact the efficacy of immunotherapy. Immunosenescence is increasingly regarded as a factor that contributes to cancer development, remodels the tumor microenvironment and affects the efficacy of immunotherapy. Natural products are at the forefront of traditional medicine. Senotherapeutics is a class of drugs and natural products capable of delaying, preventing, or reversing the senescence process (i.e., senolytics) or suppressing senescence-associated secretory phenotype (i.e., senomorphics). Emerging evidence supports that natural products can improve the efficacy of existing immunotherapy and expand their indications in GC mainly based upon remodeling the immunosuppressive microenvironment and reversing immunosenescence. The review provides an integrated review of previously reported and ongoing clinical trials with immunotherapeutic regimens in GC and discusses current challenges. Next, we focus on natural compounds that exert anti-GC functions and possess immunomodulatory properties. More attention is paid to the potential of these natural compounds in modulating the immune microenvironment and immunosenescence. Lastly, we discuss the nanomedicine that can overcome the deficiencies of natural products. Altogether, our review suggests the enormous potential of natural compounds in GC immunotherapy, and provides an important direction for future research.</div></div>","PeriodicalId":21594,"journal":{"name":"Seminars in cancer biology","volume":"110 ","pages":"Pages 1-16"},"PeriodicalIF":12.1,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143383221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mechanisms and strategies of immunosenescence effects on non-small cell lung cancer (NSCLC) treatment: A comprehensive analysis and future directions","authors":"Huatao Zhou , Zilong Zheng , Chengming Fan , Zijing Zhou","doi":"10.1016/j.semcancer.2025.01.001","DOIUrl":"10.1016/j.semcancer.2025.01.001","url":null,"abstract":"<div><div>Non-small cell lung cancer (NSCLC), the most prevalent form of lung cancer, remains a leading cause of cancer-related mortality worldwide, particularly among elderly individuals. The phenomenon of immunosenescence, characterized by the progressive decline in immune cell functionality with aging, plays a pivotal role in NSCLC progression and contributes to the diminished efficacy of therapeutic interventions in older patients. Immunosenescence manifests through impaired immune surveillance, reduced cytotoxic responses, and increased chronic inflammation, collectively fostering a pro-tumorigenic microenvironment. This review provides a comprehensive analysis of the molecular, cellular, and genetic mechanisms of immunosenescence and its impact on immune surveillance and the tumor microenvironment (TME) in NSCLC. We explore how aging affects various immune cells, including T cells, B cells, NK cells, and macrophages, and how these changes compromise the immune system’s ability to detect and eliminate tumor cells. Furthermore, we address the challenges posed by immunosenescence to current therapeutic strategies, particularly immunotherapy, which faces significant hurdles in elderly patients due to immune dysfunction. The review highlights emerging technologies, such as single-cell sequencing and CRISPR-Cas9, which offer new insights into immunosenescence and its potential as a therapeutic target. Finally, we outline future research directions, including strategies for rejuvenating the aging immune system and optimizing immunotherapy for older NSCLC patients, with the goal of improving treatment efficacy and survival outcomes. These efforts hold promise for the development of more effective, personalized therapies for elderly patients with NSCLC.</div></div>","PeriodicalId":21594,"journal":{"name":"Seminars in cancer biology","volume":"109 ","pages":"Pages 44-66"},"PeriodicalIF":12.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142966448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chiara Corradi , Manuel Gentiluomo , Volkan Adsay , Juan Sainz , Paolo Riccardo Camisa , Barbara Wlodarczyk , Stefano Crippa , Francesca Tavano , Gabriele Capurso , Daniele Campa
{"title":"Multi-omic markers of intraductal papillary mucinous neoplasms progression into pancreatic cancer","authors":"Chiara Corradi , Manuel Gentiluomo , Volkan Adsay , Juan Sainz , Paolo Riccardo Camisa , Barbara Wlodarczyk , Stefano Crippa , Francesca Tavano , Gabriele Capurso , Daniele Campa","doi":"10.1016/j.semcancer.2024.12.005","DOIUrl":"10.1016/j.semcancer.2024.12.005","url":null,"abstract":"<div><div>Pancreatic ductal adenocarcinoma (PDAC) is the most lethal and common form of pancreatic cancer, it has no specific symptoms, and most of the patients are diagnosed when the disease is already at an advanced stage. Chemotherapy typically has only a modest effect, making surgery the most effective treatment option. However, only a small percentage of patients are amenable to surgery. One viable strategy to reduce PDAC death burden associated with the disease is to focus on precursor lesions and identify markers able to predict who will evolve into PDAC. While most PDACs are believed to be preceded by pancreatic intraepithelial neoplasms (PanINs), 5–10 % arise from Intraductal papillary mucinous neoplasms (IPMNs), which are mass-forming cystic lesions that are very common in the general population. IPMNs offer an invaluable model of pancreatic carcinogenesis for researchers to analyse, as well as a target population for PDAC early detection by clinicians. The evolution of IPMN into cancer is a complex and multistep process, therefore the identification of individual markers will not be the solution. In recent years, multiple omics technologies have been instrumental to identify possible biomarkers of IPMN progression and carcinogenesis. The only foreseeable strategy will be to integrate multi-omics data, alongside clinical and morphological features, into a progression score or signature using either standard epidemiologic tools or artificial intelligence. The aim of this manuscript is to review the current knowledge on genetic biomarkers and to briefly mention also additional omics, such as metabolomics, the exposome, the miRNome and epigenomics of IPMNs.</div></div>","PeriodicalId":21594,"journal":{"name":"Seminars in cancer biology","volume":"109 ","pages":"Pages 25-43"},"PeriodicalIF":12.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142903348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}