Matteo Tacelli , Manuel Gentiluomo , Paolo Biamonte , Justo P. Castano , Maja Cigrovski Berković , Mauro Cives , Sanja Kapitanović , Ilaria Marinoni , Sonja Marinovic , Ilias Nikas , Lenka Nosáková , Sergio Pedraza-Arevalo , Eleonora Pellè , Aurel Perren , Jonathan Strosberg , Daniele Campa , Gabriele Capurso
{"title":"Pancreatic neuroendocrine neoplasms (pNENs): Genetic and environmental biomarkers for risk of occurrence and prognosis","authors":"Matteo Tacelli , Manuel Gentiluomo , Paolo Biamonte , Justo P. Castano , Maja Cigrovski Berković , Mauro Cives , Sanja Kapitanović , Ilaria Marinoni , Sonja Marinovic , Ilias Nikas , Lenka Nosáková , Sergio Pedraza-Arevalo , Eleonora Pellè , Aurel Perren , Jonathan Strosberg , Daniele Campa , Gabriele Capurso","doi":"10.1016/j.semcancer.2025.03.005","DOIUrl":"10.1016/j.semcancer.2025.03.005","url":null,"abstract":"<div><div>Pancreatic neuroendocrine neoplasms (pNENs) are rare and heterogeneous tumors arising from neuroendocrine cells, representing approximately 10 % of all Gastro-Entero-Pancreatic neuroendocrine neoplasms. While most pNENs are sporadic, a subset is associated with genetic syndromes such as multiple endocrine neoplasia type 1 (MEN1) or von Hippel-Lindau disease (VHL). pNENs are further classified into functioning and non-functioning tumors, with distinct clinical behaviors, prognoses, and treatment approaches. This review explores genetic and environmental biomarkers that influence the risk, prognosis, and therapeutic responses in pNENs. The epidemiology of pNENs reveals an increasing incidence, primarily due to advancements in imaging techniques. Genetic factors play a pivotal role, with germline mutations in MEN1, VHL, and other genes contributing to familial pNENs. Somatic mutations, including alterations in the mTOR pathway and DNA maintenance genes such as DAXX and ATRX, are critical in sporadic pNENs. These mutations, along with epigenetic dysregulation and transcriptomic alterations, underpin the diverse clinical and molecular phenotypes of pNENs. Emerging evidence suggests that epigenetic changes, including DNA methylation profiles, can stratify pNEN subtypes and predict disease progression. Environmental and lifestyle factors, such as diabetes, smoking, and chronic pancreatitis, have been linked to an increased risk of sporadic pNENs. While the association between these factors and tumor progression is still under investigation, their potential role in influencing therapeutic outcomes warrants further study. Advances in systemic therapies, including somatostatin analogs, mTOR inhibitors, and tyrosine kinase inhibitors, have improved disease management. Biomarkers such as Ki-67, somatostatin receptor expression, and O6-methylguanine-DNA methyltransferase (MGMT) status are being evaluated for their predictive value. Novel approaches, including the use of circulating biomarkers (NETest, circulating tumor cells, and ctDNA) and polygenic risk scores, offer promising avenues for non-invasive diagnosis and monitoring. Despite these advancements, challenges remain, including the need for large, well-annotated datasets and validated biomarkers. Future research should integrate multi-omics approaches and leverage liquid biopsy technologies to refine diagnostic, prognostic, and therapeutic strategies. Interdisciplinary collaborations and global consortia are crucial for overcoming current limitations and translating research findings into clinical practice. These insights hold promise for improving prevention, early detection, and tailored treatments, ultimately enhancing patient outcomes.</div></div>","PeriodicalId":21594,"journal":{"name":"Seminars in cancer biology","volume":"112 ","pages":"Pages 112-125"},"PeriodicalIF":12.1,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143739065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metabolic reprogramming of tumor microenviroment by engineered bacteria","authors":"Heng Wang, Fang Xu, Chao Wang","doi":"10.1016/j.semcancer.2025.03.003","DOIUrl":"10.1016/j.semcancer.2025.03.003","url":null,"abstract":"<div><div>The tumor microenvironment (TME) is a complex ecosystem that plays a crucial role in tumor progression and response to therapy. The metabolic characteristics of the TME are fundamental to its function, influencing not only cancer cell proliferation and survival but also the behavior of immune cells within the tumor. Metabolic reprogramming—where cancer cells adapt their metabolic pathways to support rapid growth and immune evasion—has emerged as a key factor in cancer immunotherapy. Recently, the potential of engineered bacteria in cancer immunotherapy has gained increasing recognition, offering a novel strategy to modulate TME metabolism and enhance antitumor immunity. This review summarizes the metabolic properties and adaptations of tumor and immune cells within the TME and summarizes the strategies by which engineered bacteria regulate tumor metabolism. We discuss how engineered bacteria can overcome the immunosuppressive TME by reprogramming its metabolism to improve antitumor therapy. Furthermore, we examine the advantages, potential challenges, and future clinical translation of engineered bacteria in reshaping TME metabolism.</div></div>","PeriodicalId":21594,"journal":{"name":"Seminars in cancer biology","volume":"112 ","pages":"Pages 58-70"},"PeriodicalIF":12.1,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143739064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neil Daniel , Riccardo Farinella , Flavia Belluomini , Almir Fajkic , Cosmeri Rizzato , Pavel Souček , Daniele Campa , David J. Hughes
{"title":"The relationship of the microbiome, associated metabolites and the gut barrier with pancreatic cancer","authors":"Neil Daniel , Riccardo Farinella , Flavia Belluomini , Almir Fajkic , Cosmeri Rizzato , Pavel Souček , Daniele Campa , David J. Hughes","doi":"10.1016/j.semcancer.2025.03.002","DOIUrl":"10.1016/j.semcancer.2025.03.002","url":null,"abstract":"<div><div>Pancreatic cancers have high mortality and rising incidence rates which may be related to unhealthy western-type dietary and lifestyle patterns as well as increasing body weights and obesity rates. Recent data also suggest a role for the gut microbiome in the development of pancreatic cancer. Here, we review the experimental and observational evidence for the roles of the oral, gut and intratumoural microbiomes, impaired gut barrier function and exposure to inflammatory compounds as well as metabolic dysfunction as contributors to pancreatic disease with a focus on pancreatic ductal adenocarcinoma (PDAC) initiation and progression. We also highlight some emerging gut microbiome editing techniques currently being investigated in the context of pancreatic disease. Notably, while the gut microbiome is significantly altered in PDAC and its precursor diseases, its utility as a diagnostic and prognostic tool is hindered by a lack of reproducibility and the potential for reverse causality in case-control cohorts. Future research should emphasise longitudinal and mechanistic studies as well as integrating lifestyle exposure and multi-omics data to unravel complex host-microbiome interactions. This will allow for deeper aetiologic and mechanistic insights that can inform treatments and guide public health recommendations.</div></div>","PeriodicalId":21594,"journal":{"name":"Seminars in cancer biology","volume":"112 ","pages":"Pages 43-57"},"PeriodicalIF":12.1,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143735264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"From classical approaches to artificial intelligence, old and new tools for PDAC risk stratification and prediction","authors":"Riccardo Farinella , Alessio Felici , Giulia Peduzzi , Sabrina Gloria Giulia Testoni , Eithne Costello , Paolo Aretini , Ricardo Blazquez-Encinas , Elif Oz , Aldo Pastore , Matteo Tacelli , Burçak Otlu , Daniele Campa , Manuel Gentiluomo","doi":"10.1016/j.semcancer.2025.03.004","DOIUrl":"10.1016/j.semcancer.2025.03.004","url":null,"abstract":"<div><div>Pancreatic ductal adenocarcinoma (PDAC) is recognized as one of the most lethal malignancies, characterized by late-stage diagnosis and limited therapeutic options. Risk stratification has traditionally been performed using epidemiological studies and genetic analyses, through which key risk factors, including smoking, diabetes, chronic pancreatitis, and inherited predispositions, have been identified. However, the multifactorial nature of PDAC has often been insufficiently addressed by these methods, leading to limited precision in individualized risk assessments. Advances in artificial intelligence (AI) have been proposed as a transformative approach, allowing the integration of diverse datasets—spanning genetic, clinical, lifestyle, and imaging data into dynamic models capable of uncovering novel interactions and risk profiles. In this review, the evolution of PDAC risk stratification is explored, with classical epidemiological frameworks compared to AI-driven methodologies. Genetic insights, including genome-wide association studies and polygenic risk scores, are discussed, alongside AI models such as machine learning, radiomics, and deep learning. Strengths and limitations of these approaches are evaluated, with challenges in clinical translation, such as data scarcity, model interpretability, and external validation, addressed. Finally, future directions are proposed for combining classical and AI-driven methodologies to develop scalable, personalized predictive tools for PDAC, with the goal of improving early detection and patient outcomes.</div></div>","PeriodicalId":21594,"journal":{"name":"Seminars in cancer biology","volume":"112 ","pages":"Pages 71-92"},"PeriodicalIF":12.1,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143731586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Warburg effect: The hacked mitochondrial-nuclear communication in cancer","authors":"Haowen Jiang , Jiangbin Ye","doi":"10.1016/j.semcancer.2025.03.006","DOIUrl":"10.1016/j.semcancer.2025.03.006","url":null,"abstract":"<div><div>Mitochondrial-nuclear communication is vital for maintaining cellular homeostasis. This communication begins with mitochondria sensing environmental cues and transmitting signals to the nucleus through the retrograde cascade, involving metabolic signals such as substrates for epigenetic modifications, ATP and AMP levels, calcium flux, etc. These signals inform the nucleus about the cell's metabolic state, remodel epigenome and regulate gene expression, and modulate mitochondrial function and dynamics through the anterograde feedback cascade to control cell fate and physiology. Disruption of this communication can lead to cellular dysfunction and disease progression, particularly in cancer. The Warburg effect is the metabolic hallmark of cancer, characterized by disruption of mitochondrial respiration and increased lactate generation from glycolysis. This metabolic reprogramming rewires retrograde signaling, leading to epigenetic changes and dedifferentiation, further reprogramming mitochondrial function and promoting carcinogenesis. Understanding these processes and their link to tumorigenesis is crucial for uncovering tumorigenesis mechanisms. Therapeutic strategies targeting these disrupted pathways, including metabolic and epigenetic components, provide promising avenues for cancer treatment.</div></div>","PeriodicalId":21594,"journal":{"name":"Seminars in cancer biology","volume":"112 ","pages":"Pages 93-111"},"PeriodicalIF":12.1,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143731590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The impact of the tumor microenvironment in the dual burden of obesity-cancer link","authors":"Serena Sagliocchi , Lucia Acampora , Biagio Barone , Felice Crocetto , Monica Dentice","doi":"10.1016/j.semcancer.2025.03.001","DOIUrl":"10.1016/j.semcancer.2025.03.001","url":null,"abstract":"<div><div>Obesity induces systemic perturbations of tissue homeostasis, leading to dyslipidemia, insulin resistance and chronic state of inflammation. Evidence from clinical and preclinical studies links excess of adiposity with increased cancer incidence and suggests that chronic inflammation may contribute to increased cancer risk in obese patients. Over the last decades of obesity research, multifaced and complicated effects of abnormal or excessive expansion of Adipose Tissue have been uncovered. In particular, it is widely described how obesity can exacerbate the tumorigenesis for instance by fueling soluble signals and adipokines and by enhancing tissue inflammation and altering the hormonal balance. Less is known about the paracrine effects of the cancer-associated adipocytes on the tumor cells and still poorly explored is the reciprocal communication between cancer cells and the adipose component of the tumor microenvironment (TME). In this review, we will address the mechanisms by which the peritumoral Adipose Tissue can influence the dynamics of tumoral cells. We will discuss how obesity-induced changes in the tumor microenvironment may enhance tumor growth and aggressive characteristics leading to increased invasiveness and metastatic progression of cancer that leads to a worsen cancer survival in obese subjects. We conclude that targeting the peritumoral adipose component of the TME would be a therapeutic option to prevent cancer development.</div></div>","PeriodicalId":21594,"journal":{"name":"Seminars in cancer biology","volume":"112 ","pages":"Pages 36-42"},"PeriodicalIF":12.1,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143701202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenzheng Guo, Zhibing Duan, Jingjing Wu, Binhua P. Zhou
{"title":"Epithelial-mesenchymal transition promotes metabolic reprogramming to suppress ferroptosis","authors":"Wenzheng Guo, Zhibing Duan, Jingjing Wu, Binhua P. Zhou","doi":"10.1016/j.semcancer.2025.02.013","DOIUrl":"10.1016/j.semcancer.2025.02.013","url":null,"abstract":"<div><div>Epithelial-mesenchymal transition (EMT) is a cellular de-differentiation process that provides cells with the increased plasticity and stem cell-like traits required during embryonic development, tissue remodeling, wound healing and metastasis. Morphologically, EMT confers tumor cells with fibroblast-like properties that lead to the rearrangement of cytoskeleton (loss of stiffness) and decrease of membrane rigidity by incorporating high level of poly-unsaturated fatty acids (PUFA) in their phospholipid membrane. Although large amounts of PUFA in membrane reduces rigidity and offers capabilities for tumor cells with the unbridled ability to stretch, bend and twist in metastasis, these PUFA are highly susceptible to lipid peroxidation, which leads to the breakdown of membrane integrity and, ultimately results in ferroptosis. To escape the ferroptotic risk, EMT also triggers the rewiring of metabolic program, particularly in lipid metabolism, to enforce the epigenetic regulation of EMT and mitigate the potential damages from ferroptosis. Thus, the interplay among EMT, lipid metabolism, and ferroptosis highlights a new layer of intricated regulation in cancer biology and metastasis. Here we summarize the latest findings and discuss these mutual interactions. Finally, we provide perspectives of how these interplays contribute to cellular plasticity and ferroptosis resistance in metastatic tumor cells that can be explored for innovative therapeutic interventions.</div></div>","PeriodicalId":21594,"journal":{"name":"Seminars in cancer biology","volume":"112 ","pages":"Pages 20-35"},"PeriodicalIF":12.1,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143586697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Targeting mineral metabolism in cancer: Insights into signaling pathways and therapeutic strategies","authors":"Kartik Bhatnagar , Sharon Raju , Ninad Patki , Rajender K. Motiani , Sarika Chaudhary","doi":"10.1016/j.semcancer.2025.02.011","DOIUrl":"10.1016/j.semcancer.2025.02.011","url":null,"abstract":"<div><div>Cancer remains the second leading cause of death worldwide, emphasizing the critical need for effective treatment and control strategies. Essential minerals such as copper, iron, zinc, selenium, phosphorous, calcium, and magnesium are integral to various biological processes and significantly influence cancer progression through altered metabolic pathways. For example, dysregulated copper levels promote tumor growth, while cancer cells exhibit an increased dependency on iron for signaling and redox reactions. Zinc influences tumor development through pathways such as Akt-p21. Selenium, primarily through its role in selenoproteins, exhibits anticancer potential but may also contribute to tumor progression. Similarly, dietary phosphate exacerbates tumorigenesis, metastasis, and angiogenesis through signaling pathway activation. Calcium, the most abundant mineral in the body, is tightly regulated within cells, and its dysregulation is a hallmark of various cancers. Magnesium deficiency, on the other hand, promotes cancer progression by fostering inflammation and free radical-induced DNA mutations. Interestingly, magnesium also plays a dual role, with low levels enhancing epithelial-mesenchymal transition (EMT), a critical process in cancer metastasis. This complex interplay of essential minerals underscores their potential as therapeutic targets. Dysregulation of these minerals and their pathways could be exploited to selectively target cancer cells, offering novel therapeutic strategies. This review summarizes current research on the abnormal accumulation or depletion of these microelements in tumor biology, drawing evidence from animal models, cell lines, and clinical samples. We also highlight the potential of these minerals as biomarkers for cancer diagnosis and prognosis, as well as therapeutic approaches involving metal chelators, pharmacological agents, and nanotechnology. By highlighting the intricate roles of these minerals in cancer biology, we aim to inspire further research in this critical yet underexplored area of oncology.</div></div>","PeriodicalId":21594,"journal":{"name":"Seminars in cancer biology","volume":"112 ","pages":"Pages 1-19"},"PeriodicalIF":12.1,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143537635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nan Zhang , Xu Tian , Dongkun Sun , Gary Tse , Bingxin Xie , Zhiqiang Zhao , Tong Liu
{"title":"Clonal hematopoiesis, cardiovascular disease and cancer treatment-induced cardiotoxicity","authors":"Nan Zhang , Xu Tian , Dongkun Sun , Gary Tse , Bingxin Xie , Zhiqiang Zhao , Tong Liu","doi":"10.1016/j.semcancer.2025.02.007","DOIUrl":"10.1016/j.semcancer.2025.02.007","url":null,"abstract":"<div><div>Clonal hematopoiesis (CH) arises when a substantial proportion of mature blood cells is derived from a single hematopoietic stem cell lineage. It is considered to be a premalignant state that predisposes individuals to an increased risk of cancers. Recently, emerging evidence has demonstrated a strong association between CH and both the incidence and mortality of cardiovascular diseases (CVD), with the relative risks being comparable to those attributed to traditional cardiovascular risk factors. In addition, CH has been suggested to play a role in CVD and anti-cancer treatment-related cardiotoxicity amongst cancer survivors. Moreover, certain forms of chemotherapy and radiation therapy have been shown to promote the clonal expansion of specific CH-related mutations. Consequently, CH may play a substantial role in the realm of cardio-oncology. In this review, we discuss the association between CH with cancer and CVD, with a special focus on anti-cancer treatment-related cardiotoxicity, discuss possible future research avenues and propose a systematic approach for clinical practice.</div></div>","PeriodicalId":21594,"journal":{"name":"Seminars in cancer biology","volume":"111 ","pages":"Pages 89-114"},"PeriodicalIF":12.1,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143537632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Immunosenescence in skeletal muscle: The role-play in cancer cachexia chessboard","authors":"Matteo Giovarelli , Emanuele Mocciaro , Carla Carnovale , Davide Cervia , Cristiana Perrotta , Emilio Clementi","doi":"10.1016/j.semcancer.2025.02.012","DOIUrl":"10.1016/j.semcancer.2025.02.012","url":null,"abstract":"<div><div>With the increase in life expectancy, age-related conditions and diseases have become a widespread and relevant social burden. Among these, immunosenescence and cancer cachexia play a significant often intertwined role. Immunosenescence is the progressive aging decline of both the innate and adaptive immune systems leading to increased infection susceptibility, poor vaccination efficacy, autoimmune disease, and malignancies. Cancer cachexia affects elderly patients with cancer causing severe weight loss, muscle wasting, inflammation, and reduced response to therapies. Whereas the connections between immunosenescence and cancer cachexia have been raising attention, the molecular mechanisms still need to be completely elucidated. This review aims at providing the current knowledge about the interplay between immunosenescence, skeletal muscle, and cancer cachexia, analyzing the molecular pathways known so far to be involved. Finally, we highlight potential therapeutic strategies suited for elderly population aimed to block immunosenescence and to preserve muscle mass in cachexia, also presenting the analysis of the current state-of-the-art of related clinical trials.</div></div>","PeriodicalId":21594,"journal":{"name":"Seminars in cancer biology","volume":"111 ","pages":"Pages 48-59"},"PeriodicalIF":12.1,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143520060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}