{"title":"Regulation and application of m<sup>6</sup>A modification in tumor immunity.","authors":"Qunli Xiong, Yaguang Zhang, Ying Zheng, Qing Zhu","doi":"10.1007/s11427-024-2648-0","DOIUrl":"10.1007/s11427-024-2648-0","url":null,"abstract":"<p><p>The m<sup>6</sup>A modification is an RNA modification that impacts various processes of RNA molecules, including transcription, splicing, stability, and translation. Recently, researchers have discovered that the presence of m<sup>6</sup>A modification can influence the interaction between tumor cells and immune cells and also play a role in regulating the expression of immune response-related genes. Additionally, m<sup>6</sup>A modification is intricately involved in the regulation of tumor immune evasion and drug resistance. Specifically, certain tumor cells can manipulate the gene expression through m<sup>6</sup>A modification to evade immune system attacks. Therefore, it might be possible to enhance tumor immune surveillance and improve the effectiveness of immune-based therapies by manipulating m<sup>6</sup>A modification. This review systematically discusses the role of m<sup>6</sup>A modification in tumor immunity, specifically highlighting its regulation of immune cells and immune-related genes in tumor cells. Furthermore, we explore the potential of m<sup>6</sup>A modification inhibitors as anti-cancer therapies and the significance of m<sup>6</sup>A regulatory factors in predicting the efficacy of tumor immune therapy.</p>","PeriodicalId":21576,"journal":{"name":"Science China Life Sciences","volume":" ","pages":"974-993"},"PeriodicalIF":8.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142795106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ruyu Wang, Tianxiao Wang, Ziyu Chen, Jiandong Jiang, Yifei Du, Hua Yuan, Yongchu Pan, Yuli Wang
{"title":"Bioactive materials from berberine-treated human bone marrow mesenchymal stem cells accelerate tooth extraction socket healing through the jaw vascular unit.","authors":"Ruyu Wang, Tianxiao Wang, Ziyu Chen, Jiandong Jiang, Yifei Du, Hua Yuan, Yongchu Pan, Yuli Wang","doi":"10.1007/s11427-024-2745-2","DOIUrl":"10.1007/s11427-024-2745-2","url":null,"abstract":"<p><p>Delayed tooth extraction socket (TES) healing can cause failure of subsequent oral implantation and increase socioeconomic burden on patients. Excessive amounts of M1 macrophages, apoptotic neutrophils (ANs), and neutrophil extracellular traps (NETs) impair alveolar bone regeneration during TES healing. In the present study, we first discovered that conditioned medium (CM) collected from berberine-treated human bone marrow mesenchymal stem cells (BBR-HB-CM) accelerated TES healing. BBR-HB-CM contained bioactive materials that promoted the polarization of macrophages from M1 to M2, impeded the formation of ANs and NETs, and modulated M2 macrophage efferocytosis in vivo and in vitro. Mechanistically, BBR-HB-CM promoted bone formation by inhibiting macrophage-myofibroblast transition and reprogrammed macrophage polarization through p85/AKT/mTOR pathway-dependent autophagy. The 3-methyladenine abolished the therapeutic effects of BBR-HB-CM. Further studies revealed that BBR-HB-CM accelerated TES healing in rats with type 2 diabetes mellitus. Overall, our results demonstrated that BBR-HB-CM had high potential to promote rapid TES healing.</p>","PeriodicalId":21576,"journal":{"name":"Science China Life Sciences","volume":" ","pages":"1025-1041"},"PeriodicalIF":8.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143010870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pilot work of the 10K Chinese People Genomic Diversity Project along the Silk Road suggests a complex east-west admixture landscape and biological adaptations.","authors":"Guanglin He, Hongbing Yao, Shuhan Duan, Lintao Luo, Qiuxia Sun, Renkuan Tang, Jing Chen, Zhiyong Wang, Yuntao Sun, Xiangping Li, Liping Hu, Libing Yun, Junbao Yang, Jiangwei Yan, Shengjie Nie, Yanfeng Zhu, Chuan-Chao Wang, Bing Liu, Lan Hu, Chao Liu, Mengge Wang","doi":"10.1007/s11427-024-2748-4","DOIUrl":"10.1007/s11427-024-2748-4","url":null,"abstract":"<p><p>Genomic sources from China are underrepresented in the population-specific reference database. We performed whole-genome sequencing or genome-wide genotyping on 1,207 individuals from four linguistically diverse groups (1,081 Sinitic, 56 Mongolic, 40 Turkic, and 30 Tibeto-Burman people) living in North China included in the 10K Chinese People Genomic Diversity Project (10K_CPGDP) to characterize the genetic architecture and adaptative history of ethnic groups in the Silk Road Region of China. We observed a population split between Northwest Chinese minorities (NWCMs) and Han Chinese since the Upper Paleolithic and later Neolithic genetic differentiation within NWCMs. The observed population substructures among ethnically/linguistically diverse NWCMs suggested that differentiated admixture events contributed to the differences in their genomic and phenotypic diversity. We estimated that the Dongxiang, Tibetan, and Yugur people inherited more than 10% of the Western Eurasian ancestry, which is much greater than that of the Salar and Tu people (<7%), while Han neighbors showed less West Eurasian ancestry (∼1%-3%). Male-biased admixture introduced Western Eurasian ancestry in the Dongxiang, Tibetan, and Yugur populations. We found that the eastern-western admixture in NWCMs occurred ∼800-1,100 years ago, coinciding with intensive economic and cultural exchanges during the Tang and Song dynasties. Additionally, we identified the signatures of natural selection associated with cardiovascular system diseases or lipid metabolism and developmental/neurogenetic disorders. Moreover, the EPAS1 gene showed relatively high population branch statistic values in NWCMs. The well-fitted demographical models presented the vast landscape of complex admixture processes of the Silk Road people, and the newly reported functionally important variations suggested the importance of including ethnolinguistically diverse populations in Chinese genetic studies for uncovering the genetic basis of complex traits/diseases.</p>","PeriodicalId":21576,"journal":{"name":"Science China Life Sciences","volume":" ","pages":"914-933"},"PeriodicalIF":8.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143041557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Systematical identification of regulatory GPCRs by single-cell trajectory inference reveals the role of ADGRD1 and GPR39 in adipogenesis.","authors":"Chuan Ye, Xuemei Wang, Jun Lin, Chenyang Wu, Yuhua Gao, Chenghao Guo, Yunxi Liao, Ziyan Rao, Shaodong Huang, Weixuan Chen, Ying Huang, Jinpeng Sun, Dongyu Zhao, Changtao Jiang","doi":"10.1007/s11427-024-2732-8","DOIUrl":"10.1007/s11427-024-2732-8","url":null,"abstract":"<p><p>Adipogenesis is the healthy expansion of white adipose tissue (WAT), serving as a compensatory response to maintain metabolic homeostasis in the presence of excess energy in the body. Therefore, the identification of novel regulatory molecules in adipogenesis, specifically membrane receptors such as G protein-coupled receptors (GPCRs), holds significant clinical promise. These receptors can serve as viable targets for pharmaceuticals, offering potential for restoring metabolic homeostasis in individuals with obesity. We utilized trajectory inference methods to analyze three distinct single-nucleus sequencing (sNuc-seq) datasets of adipose tissue and systematically identified GPCRs with the potential to regulate adipogenesis. Through verification in primary adipose progenitor cells (APCs) of mice, we discovered that ADGRD1 promoted the differentiation of APCs, while GPR39 inhibits this process. In the obese mouse model induced by a high-fat diet (HFD), both gain-of-function and loss-of-function studies validated that ADGRD1 promoted adipogenesis, thereby improving metabolic homeostasis, while GPR39 inhibited adipogenesis, leading to metabolic dysfunction. Additionally, through the analysis of 2,400 ChIP-seq data and 1,204 bulk RNA-seq data, we found that the transcription factors (TFs) MEF2D and TCF12 regulated the expression of ADGRD1 and GPR39, respectively. Our study revealed the regulatory role of GPCRs in adipogenesis, providing novel targets for clinical intervention of metabolic dysfunction in obese patients.</p>","PeriodicalId":21576,"journal":{"name":"Science China Life Sciences","volume":" ","pages":"1057-1072"},"PeriodicalIF":8.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143011056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unlocking the potential of spatial transcriptomics with custom microfluidic chips.","authors":"Bingqi Wu, Yuan Gao","doi":"10.1007/s11427-024-2771-9","DOIUrl":"10.1007/s11427-024-2771-9","url":null,"abstract":"","PeriodicalId":21576,"journal":{"name":"Science China Life Sciences","volume":" ","pages":"1205-1206"},"PeriodicalIF":8.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143011070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shiyun Wan, Xiaoxue Zhou, Feng Xie, Fangfang Zhou, Long Zhang
{"title":"Ketogenic diet and cancer: multidimensional exploration and research.","authors":"Shiyun Wan, Xiaoxue Zhou, Feng Xie, Fangfang Zhou, Long Zhang","doi":"10.1007/s11427-023-2637-2","DOIUrl":"10.1007/s11427-023-2637-2","url":null,"abstract":"<p><p>The ketogenic diet (KD) has attracted attention in recent years for its potential anticancer effects. KD is a dietary structure of high fat, moderate protein, and extremely low carbohydrate content. Originally introduced as a treatment for epilepsy, KD has been widely applied in weight loss programs and the management of metabolic diseases. Previous studies have shown that KD can potentially inhibit the growth and spread of cancer by limiting energy supply to tumor cells, thereby inhibiting tumor angiogenesis, reducing oxidative stress in normal cells, and affecting cancer cell signaling and other processes. Moreover, KD has been shown to influence T-cell-mediated immune responses and inflammation by modulating the gut microbiota, enhance the efficacy of standard cancer treatments, and mitigate the complications of chemotherapy. However, controversies and uncertainties remain regarding the specific mechanisms and clinical effects of KD as an adjunctive therapy for cancer. Therefore, this review summarizes the existing research and explores the intricate relationships between KD and cancer treatment.</p>","PeriodicalId":21576,"journal":{"name":"Science China Life Sciences","volume":" ","pages":"1010-1024"},"PeriodicalIF":8.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143010968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shi Chen, Yuanyuan He, Lejun Lv, Bei Liu, Cheng Li, Hongkui Deng, Jun Xu
{"title":"Transient chemical-mediated epigenetic modulation confers unrestricted lineage potential on human primed pluripotent stem cells.","authors":"Shi Chen, Yuanyuan He, Lejun Lv, Bei Liu, Cheng Li, Hongkui Deng, Jun Xu","doi":"10.1007/s11427-024-2660-3","DOIUrl":"10.1007/s11427-024-2660-3","url":null,"abstract":"<p><p>Human primed pluripotent stem cells are capable of generating all the embryonic lineages. However, their extraembryonic trophectoderm potentials are limited. It remains unclear how to expand their developmental potential to trophectoderm lineages. Here we show that transient treatment with a cocktail of small molecule epigenetic modulators imparts trophectoderm lineage potentials to human primed pluripotent stem cells while preserving their embryonic potential. These chemically treated cells can generate trophectoderm-like cells and downstream trophoblast stem cells, diverging into syncytiotrophoblast and extravillous trophoblast lineages. Transcriptomic and CUT&Tag analyses reveal that these induced cells share transcriptional profiles with in vivo trophectoderm and cytotrophoblast, and exhibit reduced H3K27me3 modification at gene loci specific to trophoblast lineages compared with primed pluripotent cells. Mechanistic exploration highlighted the critical roles of epigenetic modulators HDAC2, EZH1/2, and KDM5s in the activation of trophoblast lineage potential. Our findings demonstrate that transient epigenetic resetting activates unrestricted lineage potential in human primed pluripotent stem cells, and offer new mechanistic insights into human trophoblast lineage specification and in vitro models for studying placental development and related disorders.</p>","PeriodicalId":21576,"journal":{"name":"Science China Life Sciences","volume":" ","pages":"1084-1101"},"PeriodicalIF":8.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143011062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bacterial indole-3-propionic acid inhibits macrophage IL-1β production through targeting methionine metabolism.","authors":"Ziyi Han, Jian Fu, Aiyan Gong, Wenkai Ren","doi":"10.1007/s11427-024-2789-1","DOIUrl":"10.1007/s11427-024-2789-1","url":null,"abstract":"<p><p>The gut microbiota plays key roles in host health by shaping the host immune responses through their metabolites, like indole derivatives from tryptophan. However, the direct role of these indole derivatives in macrophage fate decision and the underlying mechanism remains unknown. Here, we found that bacterial indole-3-propionic acid (IPA) downregulates interleukin-1beta (IL-1β) production in M1 macrophages through inhibition of nuclear factor-kappa B (NF-κB) signaling. Mechanistically, IPA binds specifically with methionine adenosyl-transferase 2A (MAT2A) to promote S-adenosylmethionine (SAM) synthesis, which facilitates the DNA methylation of ubiquitin-specific peptidase 16 (USP16, a deubiquitinase), and in turn promotes Toll-like receptor 4 (TLR4) ubiquitination and NF-κB inhibition. Furthermore, IPA administration attenuates sepsis in mouse models induced by lipopolysaccharides (LPS), showcasing its potential as a microbial-derived adjunct in alleviating inflammation. Collectively, our findings reveal a newly found microbial metabolite-immune system regulatory pathway mediated by IPA.</p>","PeriodicalId":21576,"journal":{"name":"Science China Life Sciences","volume":" ","pages":"1118-1131"},"PeriodicalIF":8.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143010665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hidden allies: the role of gut microbes in carcinogen-driven cancer.","authors":"Ye Tian, Hui Wang, Hao Wu, Jingyan Zhang","doi":"10.1007/s11427-024-2764-9","DOIUrl":"10.1007/s11427-024-2764-9","url":null,"abstract":"","PeriodicalId":21576,"journal":{"name":"Science China Life Sciences","volume":" ","pages":"1197-1198"},"PeriodicalIF":8.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142792316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}