RNAPub Date : 2025-02-19DOI: 10.1261/rna.080280.124
Esteban Domingo, Brenda Martínez-González, Pilar Somovilla, Carlos García-Crespo, María Eugenia Soria, Ana Isabel de Ávila, Ignacio Gadea, Celia Perales
{"title":"A general and biomedical perspective of viral quasispecies.","authors":"Esteban Domingo, Brenda Martínez-González, Pilar Somovilla, Carlos García-Crespo, María Eugenia Soria, Ana Isabel de Ávila, Ignacio Gadea, Celia Perales","doi":"10.1261/rna.080280.124","DOIUrl":"10.1261/rna.080280.124","url":null,"abstract":"<p><p>Viral quasispecies refers to the complex and dynamic mutant distributions (also termed mutant spectra, clouds, or swarms) that arise as a result of high error rates during RNA genome replication. The mutant spectrum of individual RNA virus populations is modified by continuous generation of variant genomes, competition and interactions among them, environmental influences, bottleneck events, and bloc transmission of viral particles. Quasispecies dynamics provides a new perspective on how viruses adapt, evolve, and cause disease, and sheds light on strategies to combat them. Molecular flexibility, together with ample opportunity of mutant cloud traffic in our global world, are key ingredients of viral disease emergences, as exemplified by the recent COVID-19 pandemic. In the present article, we present a brief overview of the molecular basis of mutant swarm formation and dynamics, and how the latter relates to viral disease and epidemic spread. We outline future challenges derived of the highly diverse cellular world in which viruses are necessarily installed.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":"429-443"},"PeriodicalIF":4.2,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11874995/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142847585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RNAPub Date : 2025-02-19DOI: 10.1261/rna.080353.124
Gideon Dreyfuss
{"title":"RNA-binding proteins in disease etiology: fragile X syndrome and spinal muscular atrophy.","authors":"Gideon Dreyfuss","doi":"10.1261/rna.080353.124","DOIUrl":"10.1261/rna.080353.124","url":null,"abstract":"<p><p>All RNAs exist in complexes (RNPs) with RNA-binding proteins (RBPs). Studies in my lab since the 1980s have identified, sequenced and characterized the major pre-mRNA- and mRNA-RBPs (hnRNPs/mRNPs), revealing RNA-binding domains and common features of numerous RBPs and their central roles in posttranscriptional gene regulation. The first links between RBPs and RNPs to diseases emerged serendipitously for fragile X syndrome, as its gene (<i>FMR1</i>) encoded RBP (FMRP), and spinal muscular atrophy (SMA), caused by deficits in survival motor neurons (SMN). Discoveries of the SMN complex and its unanticipated function in RNP assembly, essential for spliceosomal snRNP biogenesis, advanced understanding of RNA biology and pathogenesis. I reflect on how these and other contributions (e.g., nucleocytoplasmic shuttling, telescripting) originated from curiosity-driven exploration and highly collaborative lab culture. The vast RNA and RBP assortments are beneficial, but increase complexity and chances of disorders, making the RNP sphere a rich source for future discoveries.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":"277-283"},"PeriodicalIF":4.2,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11874976/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142855159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RNAPub Date : 2025-02-19DOI: 10.1261/rna.080257.124
Takeshi Chujo, Kazuhito Tomizawa
{"title":"Mitochondrial tRNA modifications: functions, diseases caused by their loss, and treatment strategies.","authors":"Takeshi Chujo, Kazuhito Tomizawa","doi":"10.1261/rna.080257.124","DOIUrl":"10.1261/rna.080257.124","url":null,"abstract":"<p><p>Mitochondrial tRNA (mt-tRNA) modifications play pivotal roles in decoding and sustaining tRNA stability, thereby enabling the synthesis of essential respiratory complex proteins in mitochondria. Consequently, loss of human mt-tRNA modifications caused by mutations in the mitochondrial or nuclear genome can cause life-threatening mitochondrial diseases such as encephalopathy and cardiomyopathy. In this article, we first provide a comprehensive overview of the functions of mt-tRNA modifications, the responsible modification enzymes, and the diseases caused by the loss of mt-tRNA modifications. We then discuss progress and potential strategies to treat these diseases, including taurine supplementation for MELAS patients, targeted deletion of mtDNA variants, and overexpression of modification-related proteins. Finally, we discuss factors that need to be overcome to cure \"mitochondrial tRNA modopathies.\"</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":"382-394"},"PeriodicalIF":4.2,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11874988/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142885641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RNAPub Date : 2025-02-19DOI: 10.1261/rna.080304.124
Sandra G Williams, Soyeong Sim, Sandra L Wolin
{"title":"RNA sensing at the crossroads of autoimmunity and autoinflammation.","authors":"Sandra G Williams, Soyeong Sim, Sandra L Wolin","doi":"10.1261/rna.080304.124","DOIUrl":"10.1261/rna.080304.124","url":null,"abstract":"<p><p>Immune-mediated diseases are common in humans. The immune system is a complex host defense system that evolved to protect us from pathogens, but also plays an important role in homeostatic processes, removing dead or senescent cells, and participating in tumor surveillance. The human immune system has two arms: the older innate immune system and the newer adaptive immune system. Sensing of foreign RNA is critical to the innate immune system's ability to recognize pathogens, especially viral infections. However, RNA sensors are also strongly implicated in autoimmune and autoinflammatory diseases, highlighting the importance of balancing pathogen recognition with tolerance to host RNAs that can resemble their viral counterparts. We describe how RNA sensors bind their ligands, how this binding is coupled to upregulation of type I interferon-stimulated genes, and the ways in which mutations in RNA sensors and genes that play important roles in RNA homeostasis have been linked to autoimmune and autoinflammatory diseases.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":"369-381"},"PeriodicalIF":4.2,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11874990/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142954238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RNAPub Date : 2025-02-19DOI: 10.1261/rna.080331.124
Kasra Honarmand Tamizkar, Michael F Jantsch
{"title":"RNA editing in disease: mechanisms and therapeutic potential.","authors":"Kasra Honarmand Tamizkar, Michael F Jantsch","doi":"10.1261/rna.080331.124","DOIUrl":"10.1261/rna.080331.124","url":null,"abstract":"<p><p>Adenosine to inosine conversion by <u>a</u>denosine <u>d</u>e<u>a</u>minases acting on <u>R</u>NA (ADARs) was first identified in the late 1980s of the previous century. As the conversion of adenosines to inosines can be easily detected by sequencing of cDNAs, where the presence of an inosine reads out as a guanosine, the analysis of this type of RNA editing has become widespread. Consequently, several pipelines for detecting inosines in transcriptomes have become available. Still, how to interpret the consequences and alterations of RNA-editing events in whole transciptome editomes is a matter of debate. In particular, the cause or consequence of altered editomes on disease development is poorly understood. Similarly, absolute frequencies of editing events in single molecules, their longitudinal distribution, and naturally occurring changes during development, in different tissues, or in response to physiological changes need to be explored. Lastly, while the use of site-directed RNA editing as a treatment of certain genetic diseases is rapidly evolving, the applicability of this technology still faces several technical obstacles. In this review, we describe the current state of knowledge on adenosine deamination-type RNA editing, its involvement in disease development, and its potential as a therapeutic. Lastly, we highlight open challenges and questions that need to be addressed.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":"359-368"},"PeriodicalIF":4.2,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11874977/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142922796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RNAPub Date : 2025-02-19DOI: 10.1261/rna.080333.124
Mercedes Fernandez, Raul Mendez
{"title":"Cytoplasmic regulation of the poly(A) tail length as a potential therapeutic target.","authors":"Mercedes Fernandez, Raul Mendez","doi":"10.1261/rna.080333.124","DOIUrl":"10.1261/rna.080333.124","url":null,"abstract":"<p><p>Virtually all mRNAs acquire a poly(A) tail cotranscriptionally, but its length is dynamically regulated in the cytoplasm in a transcript-specific manner. The length of the poly(A) tail plays a crucial role in determining mRNA translation, stability, and localization. This dynamic regulation of poly(A) tail length is widely used to create posttranscriptional gene expression programs, allowing for precise temporal and spatial control. Dysregulation of poly(A) tail length has been linked to various diseases, including cancers, inflammatory and cardiovascular disorders, and neurological syndromes. Cytoplasmic poly(A) tail length is maintained by a dynamic equilibrium between <i>cis</i>-acting elements and cognate factors that promote deadenylation or polyadenylation, enabling rapid gene expression reprogramming in response to internal and external cellular cues. While cytoplasmic deadenylation and its pathophysiological implications have been extensively studied, cytoplasmic polyadenylation and its therapeutic potential remain less explored. This review discusses the distribution, regulation, and mechanisms of cytoplasmic polyadenylation element-binding proteins(CPEBs), highlighting their dual roles in either promoting or repressing gene expression depending on cellular context. We also explore their involvement in diseases such as tumor progression and metastasis, along with their potential as targets for novel therapeutic strategies.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":"402-415"},"PeriodicalIF":4.2,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11874964/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142979899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RNAPub Date : 2025-02-19DOI: 10.1261/rna.080337.124
Antto J Norppa, Mariia V Shcherbii, Mikko J Frilander
{"title":"Connecting genotype and phenotype in minor spliceosome diseases.","authors":"Antto J Norppa, Mariia V Shcherbii, Mikko J Frilander","doi":"10.1261/rna.080337.124","DOIUrl":"10.1261/rna.080337.124","url":null,"abstract":"<p><p>Minor spliceosome is responsible for recognizing and excising a specific subset of divergent introns during the pre-mRNA splicing process. Mutations in the unique snRNA and protein components of the minor spliceosome are increasingly being associated with a variety of germline and somatic human disorders, collectively termed as minor spliceosomopathies. Understanding the mechanistic basis of these diseases has been challenging due to limited functional information on many minor spliceosome components. However, recently published cryo-electron microscopy (cryo-EM) structures of various minor spliceosome assembly intermediates have marked a significant advancement in elucidating the roles of these components during splicing. These structural breakthroughs have not only enhanced our comprehension of the minor spliceosome's functionality but also shed light on how disease-associated mutations disrupt its functions. Consequently, research focus is now shifting toward investigating how these splicing defects translate into broader pathological processes within gene expression pathways. Here we outline the current structural and functional knowledge of the minor spliceosome, explore the mechanistic consequences of its mutations, and discuss emerging challenges in connecting molecular dysfunctions to clinical phenotypes.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":"31 3","pages":"284-299"},"PeriodicalIF":4.2,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11874965/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143459383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RNAPub Date : 2025-02-19DOI: 10.1261/rna.080340.124
Mehdi Amiri, Niaz Mahmood, Soroush Tahmasebi, Nahum Sonenberg
{"title":"eIF4F-mediated dysregulation of mRNA translation in cancer.","authors":"Mehdi Amiri, Niaz Mahmood, Soroush Tahmasebi, Nahum Sonenberg","doi":"10.1261/rna.080340.124","DOIUrl":"10.1261/rna.080340.124","url":null,"abstract":"<p><p>Messenger RNA (mRNA) translational control plays a pivotal role in regulating cellular proteostasis under physiological and pathological conditions. Dysregulated mRNA translation is pervasive in cancer, in which protein synthesis is elevated to support accelerated cell growth and proliferation. Consequently, targeting the mRNA translation machinery has emerged as a therapeutic strategy to treat cancer. In this Perspective, we summarize the current knowledge of translation dysregulation in cancer, with emphasis on the eukaryotic translation initiation factor 4F complex. We outline recent endeavors to apply this knowledge to develop novel treatment strategies to combat cancer.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":"416-428"},"PeriodicalIF":4.2,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11874970/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142984771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RNAPub Date : 2025-02-19DOI: 10.1261/rna.080259.124
Liangliang Wang, Ralph R Weichselbaum, Chuan He
{"title":"<i>N</i> <sup>6</sup>-methyladenosine reader YTHDF2 in cell state transition and antitumor immunity.","authors":"Liangliang Wang, Ralph R Weichselbaum, Chuan He","doi":"10.1261/rna.080259.124","DOIUrl":"10.1261/rna.080259.124","url":null,"abstract":"<p><p>Recent studies have revealed that the YTHDF family proteins bind preferentially to the <i>N</i> <sup>6</sup>-methyladenosine (m<sup>6</sup>A)-modified mRNA and regulate the functions of these RNAs in different cell types. YTHDF2, the first identified m<sup>6</sup>A reader in mammals, has garnered significant attention because of its profound effect to regulate the m<sup>6</sup>A epitranscriptome in multiple biological processes. Here, we review current knowledge on the mechanisms by which YTHDF2 exerts its functions and discuss recent advances that underscore the multifaceted role of YTHDF2 in development, stem cell expansion, and immune evasion. We also highlight potential therapeutic interventions targeting the m<sup>6</sup>A/YTHDF2 axis to improve the response to current antitumor therapies.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":"395-401"},"PeriodicalIF":4.2,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11874973/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142885758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RNAPub Date : 2025-02-19DOI: 10.1261/rna.080270.124
Suna Jung, Joel D Richter
{"title":"Trinucleotide repeat expansion and RNA dysregulation in fragile X syndrome: emerging therapeutic approaches.","authors":"Suna Jung, Joel D Richter","doi":"10.1261/rna.080270.124","DOIUrl":"10.1261/rna.080270.124","url":null,"abstract":"<p><p>Fragile X syndrome (FXS) is characterized by intellectual impairment caused by CGG repeat expansion in the <i>FMR1</i> gene. When repeats exceed 200, they induce DNA methylation of the promoter and the repeat region, resulting in transcriptional silencing of the <i>FMR1</i> gene and the subsequent loss of FMRP protein. In the past decade or so, research has focused on the role of FMRP as an RNA-binding protein involved in translation inhibition in the brain in FXS model mice, particularly by slowing or stalling ribosome translocation on mRNA. More recent advances have shown that FMRP has a profound role in RNA splicing, at least in some cases by modulating the translation of splicing factor mRNAs. In a surprise, the human <i>FMR1</i> gene is transcribed in most cases even with a full CGG expansion. However, much of the <i>FMR1</i> that is produced is misspliced, which can be corrected by splice-switching antisense oligonucleotide (ASO) administration. Other recent findings suggest that inhibition of multiple kinases can demethylate the <i>FMR1</i> gene and induce the formation of an R-loop in the CGG repeat region, leading to contraction of the repeat and FMRP restoration. These insights are paving the way for possible future therapeutic approaches for this disorder. We highlight the importance of FMRP restoration by ASO-mediated splice switching or CGG repeat modulation as key advances that may lead to successful treatments for FXS.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":"307-313"},"PeriodicalIF":4.2,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11874960/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142897134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}