Giulia Biancon, Emma Busarello, Matthew Cheng, Stephanie Halene, Toma Tebaldi
{"title":"Dissecting the stress granule RNA world: dynamics, strategies and data.","authors":"Giulia Biancon, Emma Busarello, Matthew Cheng, Stephanie Halene, Toma Tebaldi","doi":"10.1261/rna.080409.125","DOIUrl":null,"url":null,"abstract":"<p><p>Stress granules (SGs) are cytoplasmic ribonucleoprotein granules that commonly nucleate from the interaction of translationally stalled mRNAs and RNA binding proteins. SGs are involved in the cellular adaptation to stress conditions participating in the regulation of gene expression and cell signaling. While dysregulation of SG dynamics has been increasingly implicated in human disease, a comprehensive understanding of SG composition, particularly of the RNA component, across various conditions remains elusive. Here, we review physiological and pathological aspects of SGs, discuss current and future experimental strategies to identify SG components, and provide insights into the SG RNA world through the meta-analysis of 26 human SG transcriptome datasets.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1261/rna.080409.125","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Stress granules (SGs) are cytoplasmic ribonucleoprotein granules that commonly nucleate from the interaction of translationally stalled mRNAs and RNA binding proteins. SGs are involved in the cellular adaptation to stress conditions participating in the regulation of gene expression and cell signaling. While dysregulation of SG dynamics has been increasingly implicated in human disease, a comprehensive understanding of SG composition, particularly of the RNA component, across various conditions remains elusive. Here, we review physiological and pathological aspects of SGs, discuss current and future experimental strategies to identify SG components, and provide insights into the SG RNA world through the meta-analysis of 26 human SG transcriptome datasets.
期刊介绍:
RNA is a monthly journal which provides rapid publication of significant original research in all areas of RNA structure and function in eukaryotic, prokaryotic, and viral systems. It covers a broad range of subjects in RNA research, including: structural analysis by biochemical or biophysical means; mRNA structure, function and biogenesis; alternative processing: cis-acting elements and trans-acting factors; ribosome structure and function; translational control; RNA catalysis; tRNA structure, function, biogenesis and identity; RNA editing; rRNA structure, function and biogenesis; RNA transport and localization; regulatory RNAs; large and small RNP structure, function and biogenesis; viral RNA metabolism; RNA stability and turnover; in vitro evolution; and RNA chemistry.