Comparative analyses of disease-linked missense mutations in the RNA exosome modeled in budding yeast reveal distinct functional consequences in translation.

IF 4.2 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
RNA Pub Date : 2025-04-17 DOI:10.1261/rna.080447.125
Maria C Sterrett, Lauryn A Cureton, Lauren N Cohen, Ambro van Hoof, Sohail Khoshnevis, Milo B Fasken, Anita H Corbett, Homa Ghalei
{"title":"Comparative analyses of disease-linked missense mutations in the RNA exosome modeled in budding yeast reveal distinct functional consequences in translation.","authors":"Maria C Sterrett, Lauryn A Cureton, Lauren N Cohen, Ambro van Hoof, Sohail Khoshnevis, Milo B Fasken, Anita H Corbett, Homa Ghalei","doi":"10.1261/rna.080447.125","DOIUrl":null,"url":null,"abstract":"<p><p>The RNA exosome is a multi-subunit, evolutionarily conserved ribonuclease complex that is essential for processing, decay and surveillance of many cellular RNAs. Missense mutations in genes encoding the structural subunits of the RNA exosome complex cause a diverse range of diseases, collectively known as RNA exosomopathies, often involving neurological and developmental defects. The varied symptoms suggest that different mutations lead to distinct in vivo consequences. To investigate these functional consequences and distinguish whether they are unique to each RNA exosomopathy mutation, we generated a collection of in vivo models by introducing pathogenic missense mutations in orthologous S. cerevisiae genes. Comparative RNA-seq analysis assessing broad transcriptomic changes in each mutant model revealed that three yeast mutant models, rrp4-G226D, rrp40-W195R and rrp46-L191H, which model mutations in the genes encoding EXOSC2, EXOSC3 and EXOSC5, respectively, had the largest transcriptomic differences. While some transcriptomic changes, particularly in transcripts related to ribosome biogenesis, were shared among mutant models, each mutation also induced unique transcriptomic changes. Thus, our data suggests that while there are some shared consequences, there are also distinct differences in RNA exosome function by each variant. Assessment of ribosome biogenesis and translation defects in the three models revealed distinct differences in polysome profiles. Collectively, our results provide the first comparative analyses of RNA exosomopathy mutant models and suggest that different RNA exosome gene mutations result in in vivo consequences that are both unique and shared across each variant, providing further insight into the biology underlying each distinct pathology.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1261/rna.080447.125","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The RNA exosome is a multi-subunit, evolutionarily conserved ribonuclease complex that is essential for processing, decay and surveillance of many cellular RNAs. Missense mutations in genes encoding the structural subunits of the RNA exosome complex cause a diverse range of diseases, collectively known as RNA exosomopathies, often involving neurological and developmental defects. The varied symptoms suggest that different mutations lead to distinct in vivo consequences. To investigate these functional consequences and distinguish whether they are unique to each RNA exosomopathy mutation, we generated a collection of in vivo models by introducing pathogenic missense mutations in orthologous S. cerevisiae genes. Comparative RNA-seq analysis assessing broad transcriptomic changes in each mutant model revealed that three yeast mutant models, rrp4-G226D, rrp40-W195R and rrp46-L191H, which model mutations in the genes encoding EXOSC2, EXOSC3 and EXOSC5, respectively, had the largest transcriptomic differences. While some transcriptomic changes, particularly in transcripts related to ribosome biogenesis, were shared among mutant models, each mutation also induced unique transcriptomic changes. Thus, our data suggests that while there are some shared consequences, there are also distinct differences in RNA exosome function by each variant. Assessment of ribosome biogenesis and translation defects in the three models revealed distinct differences in polysome profiles. Collectively, our results provide the first comparative analyses of RNA exosomopathy mutant models and suggest that different RNA exosome gene mutations result in in vivo consequences that are both unique and shared across each variant, providing further insight into the biology underlying each distinct pathology.

在出芽酵母中建模的RNA外泌体中与疾病相关的错义突变的比较分析揭示了翻译中不同的功能后果。
RNA外泌体是一种多亚基、进化上保守的核糖核酸酶复合物,对许多细胞RNA的加工、衰变和监视至关重要。编码RNA外泌体复合体结构亚基的基因错义突变可引起多种疾病,统称为RNA外泌体病,通常涉及神经和发育缺陷。不同的症状表明不同的突变导致不同的体内后果。为了研究这些功能后果,并区分它们是否是每个RNA外体病突变所特有的,我们通过在同源酿酒葡萄球菌基因中引入致病性错义突变,建立了一系列体内模型。比较RNA-seq分析评估了每种突变模型的广泛转录组变化,结果显示,三个酵母突变模型rrp4-G226D、rrp40-W195R和rrp46-L191H的转录组差异最大,它们分别模拟了编码EXOSC2、EXOSC3和EXOSC5基因的突变。虽然一些转录组变化,特别是与核糖体生物发生相关的转录物,在突变模型中是共享的,但每个突变也会引起独特的转录组变化。因此,我们的数据表明,尽管存在一些共同的后果,但每种变体在RNA外泌体功能上也存在明显差异。对三种模型核糖体生物发生和翻译缺陷的评估揭示了多体谱的明显差异。总的来说,我们的研究结果首次对RNA外泌体病突变模型进行了比较分析,并表明不同的RNA外泌体基因突变导致的体内后果在每个变体中都是独特的和共有的,从而进一步深入了解每种不同病理的生物学基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
RNA
RNA 生物-生化与分子生物学
CiteScore
8.30
自引率
2.20%
发文量
101
审稿时长
2.6 months
期刊介绍: RNA is a monthly journal which provides rapid publication of significant original research in all areas of RNA structure and function in eukaryotic, prokaryotic, and viral systems. It covers a broad range of subjects in RNA research, including: structural analysis by biochemical or biophysical means; mRNA structure, function and biogenesis; alternative processing: cis-acting elements and trans-acting factors; ribosome structure and function; translational control; RNA catalysis; tRNA structure, function, biogenesis and identity; RNA editing; rRNA structure, function and biogenesis; RNA transport and localization; regulatory RNAs; large and small RNP structure, function and biogenesis; viral RNA metabolism; RNA stability and turnover; in vitro evolution; and RNA chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信