Reviews in Inorganic Chemistry最新文献

筛选
英文 中文
Porous materials: Covalent Organic Frameworks (COFs) as game-changers in practical applications, a review 多孔材料:共价有机框架(COFs)在实际应用中的改变
3区 化学
Reviews in Inorganic Chemistry Pub Date : 2023-09-21 DOI: 10.1515/revic-2023-0018
Amsal Shahbaz, Khalil Ahmad, Khizar Qureshi, Hammad Majeed, Ifzan Arshad, Tabinda Tabinda, Tehreema Iftikhar, None Kashaf-ul Khair, Muhammad Ashfaq, Habib Ur Rehman Shah, Muhammad Zubair Ahmad, Shern-long Lee
{"title":"Porous materials: Covalent Organic Frameworks (COFs) as game-changers in practical applications, a review","authors":"Amsal Shahbaz, Khalil Ahmad, Khizar Qureshi, Hammad Majeed, Ifzan Arshad, Tabinda Tabinda, Tehreema Iftikhar, None Kashaf-ul Khair, Muhammad Ashfaq, Habib Ur Rehman Shah, Muhammad Zubair Ahmad, Shern-long Lee","doi":"10.1515/revic-2023-0018","DOIUrl":"https://doi.org/10.1515/revic-2023-0018","url":null,"abstract":"Abstract Covalent Organic Frameworks (COFs) represents a class of remarkable porous materials composed of organic building blocks that are covalently linked in a periodic manner to form crystalline structures. High surface area, high porosity, tunable pore size, and high stability are their exceptional properties, which make them attractive candidates for various applications in the fields of catalysis, energy storage devices, biomedical applications, gas separation and storage applications. In fact, the great interest shown in COFs gave us a stimulus to review the output of the recent substantial efforts in this area. Meanwhile, the development of portable and sophisticated systems based on these particles is believed to create deeper insights for the scientists to embark on new investigations to pave the way for discovering new fundamental characteristics of COFs, modifications. Furthermore, the effect of modifications/fractionalizations on the performance of COFs will be thoroughly explained and challenging problems are mentioned. Moreover, the paper covers an inclusive collection of referenced recent research articles, providing readers with a comprehensive understanding of the subject matter and an extensive bibliography for further exploration. Through this comprehensive overview, the paper alleviates the noteworthy contributions of COFs in driving innovation and progress in a range of key scientific disciplines.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136101777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Inorganic hydrogels: synthetic strategies, properties and applications 无机水凝胶:合成策略、性质及应用
3区 化学
Reviews in Inorganic Chemistry Pub Date : 2023-09-18 DOI: 10.1515/revic-2023-0019
Elena V. Parfenyuk, Ekaterina S. Dolinina
{"title":"Inorganic hydrogels: synthetic strategies, properties and applications","authors":"Elena V. Parfenyuk, Ekaterina S. Dolinina","doi":"10.1515/revic-2023-0019","DOIUrl":"https://doi.org/10.1515/revic-2023-0019","url":null,"abstract":"Abstract Hydrogels are widely used in various areas of human life. The vast majority of hydrogel materials used are polymer-based. Despite a number of advantages compared to polymer-based materials, studies on inorganic hydrogels are very limited and scattered. They are rarely offered as a basis for development of new functional materials. This review is an attempt to draw attention of researches to inorganic hydrogels. It describes currently existing methods for the synthesis of such hydrogels, their properties, and shows possible applications of the hydrogel materials.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":"114 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135109779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Frontmatter 头版头条
3区 化学
Reviews in Inorganic Chemistry Pub Date : 2023-09-01 DOI: 10.1515/revic-2023-frontmatter3
{"title":"Frontmatter","authors":"","doi":"10.1515/revic-2023-frontmatter3","DOIUrl":"https://doi.org/10.1515/revic-2023-frontmatter3","url":null,"abstract":"","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136355123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acyclic diaminocarbenes (ADCs) and their catalytic activity in metal catalysed organic transformation reactions 非环二氨基卡宾(ADC)及其在金属催化有机转化反应中的催化活性
IF 4.1 3区 化学
Reviews in Inorganic Chemistry Pub Date : 2023-08-25 DOI: 10.1515/revic-2022-0037
A. Maurya, Rajpal Tyagi
{"title":"Acyclic diaminocarbenes (ADCs) and their catalytic activity in metal catalysed organic transformation reactions","authors":"A. Maurya, Rajpal Tyagi","doi":"10.1515/revic-2022-0037","DOIUrl":"https://doi.org/10.1515/revic-2022-0037","url":null,"abstract":"Abstract Acyclic diaminocarbenes (ADCs)–Metal complex having strong donor ability and thermal stability led to extensive usability across every area of inorganic and organometallic chemistry. The unique properties of acyclic diaminocarbenes (ADCs) provide certain advantages over other carbene ligands and have the potential to make a great impact in catalysis. Further, the straightforward synthesis of M–ADCs (metal bound acyclic diaminocarbenes) complexes via metal-mediated reaction provides a wide range of well-defined metal carbene catalysts, which might inspire more researchers to devise unsymmetrically substituted, chiral, and novel acyclic carbene compounds. Although the above synthetic route is limited to a few late transition metals, but have great opportunities to expand the scope of this method. The application of M–ADCs complexes as a catalyst for several organic transformation reactions such as various cross-coupling reactions and asymmetric synthesis like hydroarylation, hydroazidation, hydroamination, cyclization and addition reactions which have shown comparable or even higher activities than the analogous M–NHCs based on all the reports presented. Recent findings of donor ability of several ADC ligands would be useful in fine-tuning the electronic properties, and then a catalyst with a certain combination of donicity and steric requirement could open new doors in catalytic reactivity. Thus, the objective of this review is to assess the recent growths that have been made in designing novel and chiral ADCs ligands and synthesizing ADCs–Metal complexes and to highlight catalytic activities of metal acyclic diaminocarbene complexes for cross-coupling reactions.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48052642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The coordination chemistry and supramolecular interactions of 2-(2′-Pyridyl)imidazole ligand: a comprehensive review with theoretical insight 2-(2 ' -吡啶基)咪唑配体的配位化学和超分子相互作用:具有理论见解的综合综述
IF 4.1 3区 化学
Reviews in Inorganic Chemistry Pub Date : 2023-08-10 DOI: 10.1515/revic-2023-0016
Debabrata Singha, Sasthi Charan Halder, A. D. Jana, N. Pal
{"title":"The coordination chemistry and supramolecular interactions of 2-(2′-Pyridyl)imidazole ligand: a comprehensive review with theoretical insight","authors":"Debabrata Singha, Sasthi Charan Halder, A. D. Jana, N. Pal","doi":"10.1515/revic-2023-0016","DOIUrl":"https://doi.org/10.1515/revic-2023-0016","url":null,"abstract":"Abstract This review explores the role of 2-(2′-Pyridyl)imidazole (PyimH) as a coordinating ligand and also its role as a supramolecular agent through hydrogen bonding and π⋯π interaction. Two N coordination sites make 2-(2′-Pyridyl)imidazole an analogous ligand to 2,2′-bipyridine. The syn orientation of imidazole and pyridine sp 2 nitrogen makes it a bidentate chelating ligand. PyimH mainly produces discrete coordination complexes (0D), but in a few cases, 1D coordination polymers are observed due to bridging co-ligands like oxalate, dicyanamide, tricyanomethanide, croconate, thiocyanate, and iso-thiocyanate. These discrete coordination units and co-ligand bridged 1D coordination polymers are further augmented to higher dimensional supramolecular systems having linear, zig-zag, ladder-shaped, ribbon-like, and helical geometry. These supramolecular structures are stabilized by intermolecular hydrogen bonding interaction (N–H⋯N, N–H⋯O, O–H⋯N, O–H⋯O, and C–H⋯O) and π⋯π interaction capability of PyimH ligand. PyimH generally acts as an excellent chelating ligand for a range of metal ions and is also a capable supramolecular glueing agent due to hydrogen bonding and π-stacking ability.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":"0 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66962272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Catalytic oxidation degradation of volatile organic compounds (VOCs) – a review 挥发性有机化合物(VOCs)的催化氧化降解研究进展
IF 4.1 3区 化学
Reviews in Inorganic Chemistry Pub Date : 2023-07-28 DOI: 10.1515/revic-2023-0015
Wenju Liu, Zheng Zhang, Kailong Yuan, Dang R. Dang, Peng Jin, Xiaofei Han, Qun Ge
{"title":"Catalytic oxidation degradation of volatile organic compounds (VOCs) – a review","authors":"Wenju Liu, Zheng Zhang, Kailong Yuan, Dang R. Dang, Peng Jin, Xiaofei Han, Qun Ge","doi":"10.1515/revic-2023-0015","DOIUrl":"https://doi.org/10.1515/revic-2023-0015","url":null,"abstract":"Abstract Volatile organic compounds (VOCs) are considered one of the significant contributors to air pollution because they are toxic, difficult to remove, come from a wide range of sources, and can easily cause damage to the environment and human health. There is an urgent need for effective means to reduce their emissions. The current treatment technologies for VOCs include catalytic oxidation, adsorption, condensation, and recovery. Catalytic oxidation technology stands out among the others thanks to its high catalytic efficiency, low energy requirement, and lack of secondary pollution. The difficulty of this technology lies in the development of efficient catalysts. The research on loaded noble metal catalysts and non-noble metal oxide catalysts in this area over the past few years is briefly described in this work. Firstly, the catalytic destruction mechanism of organic volatile compounds is introduced. Secondly, the effects of structural modulation during catalytic oxidation, such as the adjustment of noble metal particle size and morphology, metal doping, and defect engineering, on the conformational relationships are discussed. Finally, the challenges faced by thermal catalytic oxidation for the degradation of VOCs are discussed, and the prospects for its development are presented.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45339575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Ruthenium complexes for breast cancer therapy 钌配合物用于乳腺癌治疗
IF 4.1 3区 化学
Reviews in Inorganic Chemistry Pub Date : 2023-07-28 DOI: 10.1515/revic-2023-0010
Shaheen Sadique, A. A. Baqer, Abbas W. Salman, M. Iqbal, Mustafa M. Kadim, Faisal Jamil, Adnan Majeed, Shaista Manahil, A. Altaf
{"title":"Ruthenium complexes for breast cancer therapy","authors":"Shaheen Sadique, A. A. Baqer, Abbas W. Salman, M. Iqbal, Mustafa M. Kadim, Faisal Jamil, Adnan Majeed, Shaista Manahil, A. Altaf","doi":"10.1515/revic-2023-0010","DOIUrl":"https://doi.org/10.1515/revic-2023-0010","url":null,"abstract":"Abstract Breast cancer cells have long been inhibited by polypyridine Ru(II) complexes, which are excellent antitumor agents. Due to their multi-targeting properties, this class of ruthenium complexes has received increasing attention as anticancer drug candidates approach to various cellular targets. The aim of this review is to give information about the ligands that were carefully chosen for ruthenium complexes. There has been a great deal of interest in using ruthenium-based complexes to treat breast cancer. Several species have shown potential as treatment candidates. However, further research is needed to determine how these agents affect the metastatic potential of breast cancer cells. The mechanism of action of Ru-based anticancer candidates NAMI-A and KP1019 during phase I clinical trials has been discussed. This article explains hormone-positive breast cancer and triple-negative breast-cancer treatment by using Ru complexes. Although platinum (Pt-based) anticancer medication is widely used in cancer treatment, a minor improvement has been seen and that is Platinum replaced with Ruthenium for its anticancer properties. We have also highlighted the best effective ruthenium-based complexes in treating T.N.B.C. (triple-negative breast cancer) here in this collection.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46851718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
CeCr2Al20-type intermetallics – structure-property relationships cecr2al20型金属间化合物-结构-性能关系
IF 4.1 3区 化学
Reviews in Inorganic Chemistry Pub Date : 2023-07-03 DOI: 10.1515/revic-2023-0012
Rainer Pöttgen, O. Janka
{"title":"CeCr2Al20-type intermetallics – structure-property relationships","authors":"Rainer Pöttgen, O. Janka","doi":"10.1515/revic-2023-0012","DOIUrl":"https://doi.org/10.1515/revic-2023-0012","url":null,"abstract":"Abstract This review summarizes the synthetic aspects, the structural and crystal chemical peculiarities as well as the physical properties of the members of the CeCr2Al20 type family. Most of the known compounds were investigated in great detail with respect to their properties since the plethora of elemental combinations is an interesting playground for structure property investigations.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44277714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frontmatter 头版头条
3区 化学
Reviews in Inorganic Chemistry Pub Date : 2023-06-01 DOI: 10.1515/revic-2023-frontmatter2
{"title":"Frontmatter","authors":"","doi":"10.1515/revic-2023-frontmatter2","DOIUrl":"https://doi.org/10.1515/revic-2023-frontmatter2","url":null,"abstract":"","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135776690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ZnO metal oxide nanoparticle as biological tool ZnO金属氧化物纳米粒子作为生物工具
IF 4.1 3区 化学
Reviews in Inorganic Chemistry Pub Date : 2023-05-12 DOI: 10.1515/revic-2023-0006
Nitin Khanna, R. Tamrakar, Samit Tiwari, Kanchan Upadhyay
{"title":"ZnO metal oxide nanoparticle as biological tool","authors":"Nitin Khanna, R. Tamrakar, Samit Tiwari, Kanchan Upadhyay","doi":"10.1515/revic-2023-0006","DOIUrl":"https://doi.org/10.1515/revic-2023-0006","url":null,"abstract":"Abstract Inorganic metal oxide ZnO in the form of nano particles can change the way diseases are diagnosed and treated. ZnO Nps are selective in targeting cancer cells and due to its nano size can enter into cells and destroy it. Drugs, fluorescent agents (for imaging), targeting agents (to target diseased cells only) etc. be loaded on ZnO Nps to deliver drugs selectively in a controlled manner to specific site. ZnO Nps is non toxic as declared by medical community and hence can replace the inaccuracy and harmful side effects of conventional medicine in bulk form. In this review we have discussed about the preparation and characterization of ZnO Nps. Later part concentrated on applications in various fields including biomedical field.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49612505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信