Purinergic Signalling最新文献

筛选
英文 中文
Partners in health and disease: pineal gland and purinergic signalling. 健康与疾病的伙伴:松果体与嘌呤能信号。
IF 3 4区 医学
Purinergic Signalling Pub Date : 2024-07-20 DOI: 10.1007/s11302-024-10037-8
Regina P Markus, Kassiano S Sousa, Henning Ulrich, Zulma S Ferreira
{"title":"Partners in health and disease: pineal gland and purinergic signalling.","authors":"Regina P Markus, Kassiano S Sousa, Henning Ulrich, Zulma S Ferreira","doi":"10.1007/s11302-024-10037-8","DOIUrl":"https://doi.org/10.1007/s11302-024-10037-8","url":null,"abstract":"<p><p>In mammal's pineal glands, ATP interacts with the high-affinity P2Y<sub>1</sub> and the low-affinity P2X7 receptors. ATP released from sympathetic nerve terminals potentiates noradrenaline-induced serotonin N-acetyltransferase (Snat) transcription, N-acetylserotonin (NAS), and melatonin (MLT) synthesis. Circulating melatonin impairs the expression of adhesion molecules in endothelial cells, blocking the migration of leukocytes. Acute defence response induced by pathogen- and danger/damage-associated molecular patterns (PAMPs and DAMPs) triggers the NF-κB pathway in pinealocytes and blocks the transcription of Snat. Therefore, the darkness hormone is not released, and neutrophils and monocytes migrate to the lesion sites. ATP released in high amounts from apoptotic and death cells was considered a DAMP, and the blockage of P2X7 receptors was tested as a new class of drugs for treating brain damage. However, this is not a simple equation. High ATP injected in a lateral ventricle blocked MLT, but not NAS, synthesis as it impairs the transcription of acetyl serotonin N-methyltransferase. NAS is released in the plasma and the cerebral spinal fluid. NAS also blocks the rolling and adhesion of leukocytes to endothelial cells. Otherwise, it is metabolised specifically in each brain area to provide the requested concentration of MLT as a neuroprotector. As observed in physiological conditions, high extracellular ATP, different from the other DAMPs, reports the environmental light/dark cycle rhythm because NAS substitutes MLT as the nocturnal chemical indicator, the darkness hormone. Thus, blocking the P2X7R should not be considered a universal therapy for improving acute strokes, as MLT and ATP are partners in health and disease.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141731337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lessons from the physiological role of guanosine in neurodegeneration and cancer: Toward a multimodal mechanism of action? 鸟苷在神经变性和癌症中的生理作用的启示:建立多模式作用机制?
IF 3 4区 医学
Purinergic Signalling Pub Date : 2024-07-15 DOI: 10.1007/s11302-024-10033-y
Carla Inês Tasca, Mariachiara Zuccarini, Patrizia Di Iorio, Francisco Ciruela
{"title":"Lessons from the physiological role of guanosine in neurodegeneration and cancer: Toward a multimodal mechanism of action?","authors":"Carla Inês Tasca, Mariachiara Zuccarini, Patrizia Di Iorio, Francisco Ciruela","doi":"10.1007/s11302-024-10033-y","DOIUrl":"https://doi.org/10.1007/s11302-024-10033-y","url":null,"abstract":"<p><p>Neurodegenerative diseases and brain tumours represent important health challenges due to their severe nature and debilitating consequences that require substantial medical care. Interestingly, these conditions share common physiological characteristics, namely increased glutamate, and adenosine transmission, which are often associated with cellular dysregulation and damage. Guanosine, an endogenous nucleoside, is safe and exerts neuroprotective effects in preclinical models of excitotoxicity, along with cytotoxic effects on tumour cells. However, the lack of well-defined mechanisms of action for guanosine hinders a comprehensive understanding of its physiological effects. In fact, the absence of specific receptors for guanosine impedes the development of structure-activity research programs to develop guanosine derivatives for therapeutic purposes. Alternatively, given its apparent interaction with the adenosinergic system, it is plausible that guanosine exerts its neuroprotective and anti-tumorigenic effects by modulating adenosine transmission through undisclosed mechanisms involving adenosine receptors, transporters, and purinergic metabolism. Here, several potential molecular mechanisms behind the protective actions of guanosine will be discussed. First, we explore its potential interaction with adenosine receptors (A<sub>1</sub>R and A<sub>2A</sub>R), including the A<sub>1</sub>R-A<sub>2A</sub>R heteromer. In addition, we consider the impact of guanosine on extracellular adenosine levels and the role of guanine-based purine-converting enzymes. Collectively, the diverse cellular functions of guanosine as neuroprotective and antiproliferative agent suggest a multimodal and complementary mechanism of action.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141617044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ENTPD1 (CD39) and NT5E (CD73) expression in human medulloblastoma: an in silico analysis. ENTPD1(CD39)和NT5E(CD73)在人髓母细胞瘤中的表达:硅分析。
IF 3 4区 医学
Purinergic Signalling Pub Date : 2024-07-08 DOI: 10.1007/s11302-024-10035-w
Marco Antônio Stefani, Elizandra Braganhol, Guilherme Tomasi Santos, Samuel Masao Suwa, Daiane Dias Cabeleira, Guilherme Pamplona Bueno de Andrade
{"title":"ENTPD1 (CD39) and NT5E (CD73) expression in human medulloblastoma: an in silico analysis.","authors":"Marco Antônio Stefani, Elizandra Braganhol, Guilherme Tomasi Santos, Samuel Masao Suwa, Daiane Dias Cabeleira, Guilherme Pamplona Bueno de Andrade","doi":"10.1007/s11302-024-10035-w","DOIUrl":"https://doi.org/10.1007/s11302-024-10035-w","url":null,"abstract":"<p><p>Medulloblastoma is the most common malignant tumor in the pediatric population. Its classification has incorporated key molecular variations alongside histological characterization. CD39 (also known as ENTPD1) and CD73 (also known as NT5E), enzymes of the purinergic signaling pathway, act in synergy to generate extracellular adenosine, creating an immunosuppressive tumor microenvironment. Our study examined the expression of mRNA of these genes in previously described transcriptome data sets of medulloblastoma patient samples from the Cavalli Cohort (n = 763). Survival distribution was estimated according to the Kaplan-Meier method using a median cut-off and log-rank statistics (p ≤ 0.05). In non-WNT and non-SHH medulloblastoma Group 4 (n = 264), the high expression of ENTPD1 and NT5E was significantly related to a lower overall survival (p = 2.7e-04; p = 2.6e-03). In the SHH-activated group (n = 172), the high expression of ENTPD1 was significantly related to lower overall survival (p = 7.8e-03), while the high expression of NT5E was significantly related to greater overall survival (p = 0.017). In the WNT group (n = 63), the expressions of ENTPD1 and NT5E were not significantly correlated with overall survival (p = 0.212; p = 0.101). In non-WNT and non-SHH medulloblastoma Group 3 (n = 113), the high expression of ENTPD1 was significantly related to greater survival (p = 0.034), while expression of NT5E was not significantly related to survival of patients (p = 0.124). This in silico analysis indicates that ENTPD1 (CD39) and NT5E (CD73) can be seen as potential prognostic markers and therapeutic targets for primary medulloblastomas in non-WNT and non-SHH Group 4.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141555371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
P2Y11 receptor is a critical regulator of extracellular ATP-mediated premature senescence in lung fibroblasts: Implications of ER-Ca+2 release/mitochondrial ROS production signaling pathway. P2Y11 受体是细胞外 ATP 介导的肺成纤维细胞早衰的关键调节因子:ER-Ca+2释放/软核ROS产生信号通路的影响
IF 3 4区 医学
Purinergic Signalling Pub Date : 2024-07-08 DOI: 10.1007/s11302-024-10036-9
Abdel-Aziz S Shatat
{"title":"P2Y<sub>11</sub> receptor is a critical regulator of extracellular ATP-mediated premature senescence in lung fibroblasts: Implications of ER-Ca<sup>+2</sup> release/mitochondrial ROS production signaling pathway.","authors":"Abdel-Aziz S Shatat","doi":"10.1007/s11302-024-10036-9","DOIUrl":"https://doi.org/10.1007/s11302-024-10036-9","url":null,"abstract":"","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141559588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of purinergic system components in the venom of Bothrops mattogrossensis and the inhibitory effect of specioside extracted from Tabebuia aurea. Bothrops mattogrossensis 毒液中嘌呤能系统成分的鉴定以及从 Tabebuia aurea 中提取的specioside 的抑制作用。
IF 3 4区 医学
Purinergic Signalling Pub Date : 2024-07-03 DOI: 10.1007/s11302-024-10032-z
Dhébora Albuquerque Dias, Kamylla Fernanda Souza de Souza, Iluska Senna Bonfá Moslaves, Marcus Vinicius Buri, Denise Caroline Luiz Soares Basilio, Isabelly Teixeira Espinoça, Eduardo Benedetti Parisotto, Saulo Euclides Silva-Filho, Ludovico Migliolo, Jeandre Augusto Otsubo Jaques, Daniel Guerra Franco, Ana Marisa Chudzinski-Tavassi, Paula Helena Santa Rita, Denise Brentan da Silva, Carlos Alexandre Carollo, Mônica Cristina Toffoli-Kadri, Edgar Julian Paredes-Gamero
{"title":"Identification of purinergic system components in the venom of Bothrops mattogrossensis and the inhibitory effect of specioside extracted from Tabebuia aurea.","authors":"Dhébora Albuquerque Dias, Kamylla Fernanda Souza de Souza, Iluska Senna Bonfá Moslaves, Marcus Vinicius Buri, Denise Caroline Luiz Soares Basilio, Isabelly Teixeira Espinoça, Eduardo Benedetti Parisotto, Saulo Euclides Silva-Filho, Ludovico Migliolo, Jeandre Augusto Otsubo Jaques, Daniel Guerra Franco, Ana Marisa Chudzinski-Tavassi, Paula Helena Santa Rita, Denise Brentan da Silva, Carlos Alexandre Carollo, Mônica Cristina Toffoli-Kadri, Edgar Julian Paredes-Gamero","doi":"10.1007/s11302-024-10032-z","DOIUrl":"https://doi.org/10.1007/s11302-024-10032-z","url":null,"abstract":"<p><p>Snake bites are a severe problem in the countryside of Brazil and are usually attributed to snakes of the genera Bothrops, Crotalus, and Lachesis. Snake venom can release ectoenzymes and nucleotidases that modulate the purinergic system. In addition to serum therapy against snake poisoning, medicinal plants with anti-inflammatory activities, such as Tabebuia aurea, is empirically applied in accidents that occur in difficult-to-access areas. This study aimed was to verify the presence and activity of nucleotidases in the crude venom of Bothrops mattogrossensis (BmtV) in vitro and characterize the modulation of purinergic components, myeloid differentiation, and inflammatory/oxidative stress markers by BmtV in vivo and in vitro. Moreover, our study assessed the inhibitory activities of specioside, an iridoid isolated from Tabebuia aurea, against the effects of BmtV. Proteomic analysis of venom content and nucleotidase activity confirm the presence of ectonucleotidase-like enzymes in BmtV. In in vivo experiments, BmtV altered purinergic component expression (P2X7 receptor, CD39 and CD73), increased neutrophil numbers in peripheral blood, and elevated oxidative stress/inflammatory parameters such as lipid peroxidation and myeloperoxidase activity. BmtV also decreased viability and increased spreading index and phagocytic activity on macrophages. Specioside inhibited nucleotidase activity, restored neutrophil numbers, and mediate the oxidative/inflammatory effects produced by BmtV. We highlight the effects produced by BmtV in purinergic system components, myeloid differentiation, and inflammatory/oxidative stress parameters, while specioside reduced the main BmtV-dependent effects.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141493146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ectonucleotidase inhibitors: targeting signaling pathways for therapeutic advancement-an in-depth review. 外显子核苷酸酶抑制剂:靶向信号通路促进治疗--深度综述。
IF 3 4区 医学
Purinergic Signalling Pub Date : 2024-07-03 DOI: 10.1007/s11302-024-10031-0
R Huzaifa Sharafat, Aamer Saeed
{"title":"Ectonucleotidase inhibitors: targeting signaling pathways for therapeutic advancement-an in-depth review.","authors":"R Huzaifa Sharafat, Aamer Saeed","doi":"10.1007/s11302-024-10031-0","DOIUrl":"https://doi.org/10.1007/s11302-024-10031-0","url":null,"abstract":"<p><p>Ectonucleotidase inhibitors are a family of pharmacological drugs that, by selectively targeting ectonucleotidases, are essential in altering purinergic signaling pathways. The hydrolysis of extracellular nucleotides and nucleosides is carried out by these enzymes, which include ectonucleoside triphosphate diphosphohydrolases (NTPDases) and ecto-5'-nucleotidase (CD73). Ectonucleotidase inhibitors can prevent the conversion of ATP and ADP into adenosine by blocking these enzymes and reduce extracellular adenosine. These molecules are essential for purinergic signaling, which is associated with a variability of physiological and pathological processes. By modifying extracellular nucleotide metabolism and improving purinergic signaling regulation, ectonucleotide pyrophosphatase/phosphodiesterase (ENPP) inhibitors have the potential to improve cancer treatment, inflammatory management, and immune response modulation. Purinergic signaling is affected by CD73 inhibitors because they prevent AMP from being converted to adenosine. These inhibitors are useful in cancer therapy and immunotherapy because they may improve chemotherapy effectiveness and alter immune responses. Purinergic signaling is controlled by NTPDase inhibitors, which specifically target enzymes involved in extracellular nucleotide breakdown. These inhibitors show promise in reducing immunological responses, thrombosis, and inflammation, perhaps assisting in the treatment of cardiovascular and autoimmune illnesses. Alkaline phosphatase (ALP) inhibitors alter the function of enzymes involved in dephosphorylation reactions, which has an impact on a variety of biological processes. By altering the body's phosphate levels, these inhibitors may be used to treat diseases including hyperphosphatemia and certain bone problems. This article provides a guide for researchers and clinicians looking to leverage the remedial capability of ectonucleotidase inhibitors in a variety of illness scenarios by illuminating their processes, advantages, and difficulties.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141493145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
P2X7 and P2Y1 receptors in DRG mediate electroacupuncture to inhibit peripheral sensitization in rats with IBS visceral pain. DRG中的P2X7和P2Y1受体介导电针抑制肠易激综合征内脏痛大鼠的外周敏感性
IF 3 4区 医学
Purinergic Signalling Pub Date : 2024-06-26 DOI: 10.1007/s11302-024-10028-9
Tingting Lv, Guona Li, Chen Zhao, Jindan Ma, Fang Zhang, Min Zhao, Huirong Liu, Huangan Wu, Kunshan Li, Zhijun Weng
{"title":"P2X7 and P2Y<sub>1</sub> receptors in DRG mediate electroacupuncture to inhibit peripheral sensitization in rats with IBS visceral pain.","authors":"Tingting Lv, Guona Li, Chen Zhao, Jindan Ma, Fang Zhang, Min Zhao, Huirong Liu, Huangan Wu, Kunshan Li, Zhijun Weng","doi":"10.1007/s11302-024-10028-9","DOIUrl":"https://doi.org/10.1007/s11302-024-10028-9","url":null,"abstract":"<p><p>Although multiple purinergic receptors mediate the analgesic effects of acupuncture, it remains unclear whether there is mutual interaction between purinergic receptors to jointly mediate the electroacupuncture inhibition of peripheral sensitization in visceral pain. Visceral hypersensitivity was induced by intracolonic 2,4,6-trinitrobenzene sulfonic acid (TNBS) in rat. The antinociception effect of electroacupuncture on visceral pain was evaluated by morphology, behaviors, neuroelectrophysiology and molecular biology techniques. After labeling the colon-related primary sensory neurons with neural retrograde tracer and employing neuropharmacology, neuroelectrophysiology, and molecular biotechnology, the mechanisms of P2X7R, P2Y<sub>1</sub>R, and P2X3R in colon-related dorsal root ganglion (DRG) neurons alleviating visceral hypersensitivity of irritable bowel syndrome (IBS) by electroacupuncture at Zusanli and Sanyinjiao acupoints.were elucidated from the perspective of peripheral sensitization. Electroacupuncture significantly inhibited TNBS-induced colonic hypersensitivity in rats with IBS, and Satellite Glial Cells (SGCs) in DRG were found to be involved in electroacupuncture-mediated regulation of the electrophysiological properties of neurons. P2X7R was found to play a pain-inducing role in IBS visceral hypersensitivity by affecting P2X3R, and electroacupuncture exerted an analgesic effect by inhibiting P2X7R activation. P2Y<sub>1</sub>R was found to play an analgesic role in the process of visceral pain, mediating electroacupuncture to relieve visceral hypersensitivity. P2Y<sub>1</sub>R relieved visceral pain by inhibiting P2X3R in neurons associated with nociception, with P2X7R identified as upstream of P2Y<sub>1</sub>R up-regulation by electroacupuncture. Our study suggests that the P2X7R → P2Y<sub>1</sub>R → P2X3R inhibitory pathway in DRG mediates the inhibition of peripheral sensitization by electroacupuncture in rats with IBS visceral hypersensitivity.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141451377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microglial purinergic signaling in Alzheimer's disease. 阿尔茨海默病中的小胶质细胞嘌呤能信号传导
IF 3 4区 医学
Purinergic Signalling Pub Date : 2024-06-24 DOI: 10.1007/s11302-024-10029-8
Shu-Ya Mei, Ning Zhang, Meng-Jing Wang, Pei-Ran Lv, Qi Liu
{"title":"Microglial purinergic signaling in Alzheimer's disease.","authors":"Shu-Ya Mei, Ning Zhang, Meng-Jing Wang, Pei-Ran Lv, Qi Liu","doi":"10.1007/s11302-024-10029-8","DOIUrl":"https://doi.org/10.1007/s11302-024-10029-8","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a progressive and fatal neurodegenerative disease. The prevalent features of AD pathogenesis are the appearance of β-amyloid (Aβ) plaques and neurofibrillary tangles, which cause microglial activation, synaptic deficiency, and neuronal loss. Microglia accompanies AD pathological processes and is also linked to cognitive deficits. Purinergic signaling has been shown to play a complex and tight interplay with the chemotaxis, phagocytosis, and production of pro-inflammatory factors in microglia, which is an important mechanism for regulating microglia activation. Here, we review recent evidence for interactions between AD, microglia, and purinergic signaling and find that the purinergic P2 receptors pertinently expressed on microglia are the ionotropic receptors P2X4 and P2X7, and the subtypes of P2YRs expressed by microglia are metabotropic receptors P2Y<sub>2</sub>, P2Y<sub>6</sub>, P2Y<sub>12</sub>, and P2Y<sub>13</sub>. The adenosine P1 receptors expressed in microglia include A<sub>1</sub>R, A<sub>2A</sub>R, and A<sub>2B</sub>R. Among them, the activation of P2X4, P2X7, and adenosine A<sub>1</sub>, A<sub>2A</sub> receptors expressed in microglia can aggravate the pathological process of AD, whereas P2Y<sub>2</sub>, P2Y<sub>6</sub>, P2Y<sub>12</sub>, and P2Y<sub>13</sub> receptors expressed by microglia can induce neuroprotective effects. However, A<sub>1</sub>R activation also has a strong neuroprotective effect and has a significant anti-inflammatory effect in chronic neuroinflammation. These receptors regulate a variety of pathophysiological processes in AD, including APP processing, Aβ production, tau phosphorylation, neuroinflammation, synaptic dysfunction, and mitochondrial dysfunction. This review also provides key pharmacological advances in purinergic signaling receptors.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141443208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring novel dilazep derivatives as hENT1 inhibitors and potentially covalent molecular tools. 探索新型地拉西泮衍生物作为 hENT1 抑制剂和潜在的共价分子工具。
IF 3.5 4区 医学
Purinergic Signalling Pub Date : 2024-06-15 DOI: 10.1007/s11302-024-10026-x
Majlen A Dilweg, Marina Gorostiola González, Martijn D de Ruiter, Nadine J Meijboom, Jacobus P D van Veldhoven, Rongfang Liu, Willem Jespers, Gerard J P van Westen, Laura H Heitman, Adriaan P IJzerman, Daan van der Es
{"title":"Exploring novel dilazep derivatives as hENT1 inhibitors and potentially covalent molecular tools.","authors":"Majlen A Dilweg, Marina Gorostiola González, Martijn D de Ruiter, Nadine J Meijboom, Jacobus P D van Veldhoven, Rongfang Liu, Willem Jespers, Gerard J P van Westen, Laura H Heitman, Adriaan P IJzerman, Daan van der Es","doi":"10.1007/s11302-024-10026-x","DOIUrl":"https://doi.org/10.1007/s11302-024-10026-x","url":null,"abstract":"<p><p>The human equilibrative nucleoside transporter 1 (SLC29A1, hENT1) is a solute carrier that modulates the passive transport of nucleosides and nucleobases, such as adenosine. This nucleoside regulates various physiological processes, such as vasodilation and -constriction, neurotransmission and immune defense. Marketed drugs such as dilazep and dipyridamole have proven useful in cardiovascular afflictions, but the application of hENT1 inhibitors can be beneficial in a number of other diseases. In this study, 39 derivatives of dilazep's close analogue ST7092 were designed, synthesized and subsequently assessed using [<sup>3</sup>H]NBTI displacement assays and molecular docking. Different substitution patterns of the trimethoxy benzoates of ST7092 reduced interactions within the binding pocket, resulting in diminished hENT1 affinity. Conversely, [<sup>3</sup>H]NBTI displacement by potentially covalent compounds 14b, 14c, and 14d resulted in high affinities (K<sub>i</sub> values between 1.1 and 17.5 nM) for the transporter, primarily by the ability of accommodating the inhibitors in various ways in the binding pocket. However, any indication of covalent binding with amino acid residue C439 remained absent, conceivably as a result of decreased nucleophilic residue reactivity. In conclusion, this research introduces novel dilazep derivatives that are active as hENT1 inhibitors, along with the first high affinity dilazep derivatives equipped with an electrophilic warhead. These findings will aid the rational and structure-based development of novel hENT1 inhibitors and pharmacological tools to study hENT1's function, binding mechanisms, and its relevance in (patho)physiological conditions.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141327731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role and recent progress of P2Y12 receptor in cancer development. P2Y12 受体在癌症发展中的作用和最新进展。
IF 3 4区 医学
Purinergic Signalling Pub Date : 2024-06-14 DOI: 10.1007/s11302-024-10027-w
Yanni Xi, Zhenya Min, Mianxue Liu, Xueqin Lin, Zhao-Hua Yuan
{"title":"Role and recent progress of P2Y12 receptor in cancer development.","authors":"Yanni Xi, Zhenya Min, Mianxue Liu, Xueqin Lin, Zhao-Hua Yuan","doi":"10.1007/s11302-024-10027-w","DOIUrl":"10.1007/s11302-024-10027-w","url":null,"abstract":"<p><p>P2Y12 receptor (P2Y12R) is an adenosine-activated G protein-coupled receptor (GPCR) that plays a central role in platelet function, hemostasis, and thrombosis. P2Y12R activation can promote platelet aggregation and adhesion to cancer cells, promote tumor angiogenesis, and affect the tumor immune microenvironment (TIME) and tumor drug resistance, which is conducive to the progression of cancers. Meanwhile, P2Y12R inhibitors can inhibit this effect, suggesting that P2Y12R may be a potential therapeutic target for cancer. P2Y12R is involved in cancer development and metastasis, while P2Y12R inhibitors are effective in inhibiting cancer. However, a new study suggests that long-term use of P2Y12R inhibitors may increase the risk of cancer and the mechanism remains to be explored. In this paper, we reviewed the structural and functional characteristics of P2Y12R and its role in cancer. We explored the role of P2Y12R inhibitors in different tumors and the latest advances by summarizing the basic and clinical studies on the effects of P2Y12R inhibitors on tumors.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141318112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信