Andréia Machado Cardoso, André Campos de Lima, Aline Manica, Daniela Zanini, Lucas Macedo Chaves, Samantha Nuncio Prestes, Sedinei Lopes Copatti, Michele Mainardi Pillat, Taís Vidal, Clodoaldo Antônio de Sá
{"title":"The anti-inflammatory effect of physical exercise on type 2 diabetes: the role of purinergic signaling.","authors":"Andréia Machado Cardoso, André Campos de Lima, Aline Manica, Daniela Zanini, Lucas Macedo Chaves, Samantha Nuncio Prestes, Sedinei Lopes Copatti, Michele Mainardi Pillat, Taís Vidal, Clodoaldo Antônio de Sá","doi":"10.1007/s11302-025-10087-6","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the effects of physical exercise (PE) on the modulation of purinergic signaling and inflammatory profiles in sedentary women with type 2 diabetes mellitus (T2DM). Over 16 weeks, participants underwent a combined aerobic and resistance training program. The intervention resulted in reduced extracellular ATP levels and decreased activity of E-NTPDase and ADA enzymes, shifting the inflammatory balance toward an anti-inflammatory profile. A significant increase in anti-inflammatory cytokines (IL-10, IL-4) and a decrease in pro-inflammatory markers (TNF-α, IFN-γ, IL-6) were observed in the T2DM group. Correlations indicated that ATP hydrolysis was inversely related to anti-inflammatory cytokines, supporting the role of PE in modulating purinergic pathways. Additionally, improvements in glycemic control, systolic blood pressure, and functional capacity highlighted the systemic benefits of exercise. These findings emphasize the therapeutic potential of PE in managing T2DM by targeting inflammation and metabolic dysregulation through purinergic modulation. Further studies should explore these mechanisms to optimize exercise-based interventions.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Purinergic Signalling","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11302-025-10087-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the effects of physical exercise (PE) on the modulation of purinergic signaling and inflammatory profiles in sedentary women with type 2 diabetes mellitus (T2DM). Over 16 weeks, participants underwent a combined aerobic and resistance training program. The intervention resulted in reduced extracellular ATP levels and decreased activity of E-NTPDase and ADA enzymes, shifting the inflammatory balance toward an anti-inflammatory profile. A significant increase in anti-inflammatory cytokines (IL-10, IL-4) and a decrease in pro-inflammatory markers (TNF-α, IFN-γ, IL-6) were observed in the T2DM group. Correlations indicated that ATP hydrolysis was inversely related to anti-inflammatory cytokines, supporting the role of PE in modulating purinergic pathways. Additionally, improvements in glycemic control, systolic blood pressure, and functional capacity highlighted the systemic benefits of exercise. These findings emphasize the therapeutic potential of PE in managing T2DM by targeting inflammation and metabolic dysregulation through purinergic modulation. Further studies should explore these mechanisms to optimize exercise-based interventions.
期刊介绍:
Nucleotides and nucleosides are primitive biological molecules that were utilized early in evolution both as intracellular energy sources and as extracellular signalling molecules. ATP was first identified as a neurotransmitter and later as a co-transmitter with all the established neurotransmitters in both peripheral and central nervous systems. Four subtypes of P1 (adenosine) receptors, 7 subtypes of P2X ion channel receptors and 8 subtypes of P2Y G protein-coupled receptors have currently been identified. Since P2 receptors were first cloned in the early 1990’s, there is clear evidence for the widespread distribution of both P1 and P2 receptor subtypes in neuronal and non-neuronal cells, including glial, immune, bone, muscle, endothelial, epithelial and endocrine cells.