Duy Du Bui, Hong Nhung Nguyen, Phuoc Tho Tran, Nghiem Anh Tuan Le, Quoc Hien Nguyen, D. Phan
{"title":"Preparation of sulfur nanoparticles in chitosan-copper complex and investigation of its nematicidal activity against Pratylenchus pratensis in vitro","authors":"Duy Du Bui, Hong Nhung Nguyen, Phuoc Tho Tran, Nghiem Anh Tuan Le, Quoc Hien Nguyen, D. Phan","doi":"10.1515/pac-2023-1208","DOIUrl":"https://doi.org/10.1515/pac-2023-1208","url":null,"abstract":"\u0000 Sulfur nanoparticles (SNPs) in chitosan-copper (CS-Cu2+) complex solution were prepared by hydrolysis of sodium thiosulfate (Na2S2O3) in an acidic medium of CS-Cu2+ complex. The size of SNPs was inversely proportional to the Cu2+/−NH2 molar ratio, decreasing from 35 to 22 nm corresponding to the Cu2+/−NH2 molar ratio increasing from 0/1 to 1/1. The SNPs/CS-Cu2+ complex was characterized by Ultraviolet-Visible spectroscopy (UV–Vis), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) spectroscopy. The nematicidal activity against Pratylenchus pratensis in vitro was investigated by treating the CS-Cu2+ complex and SNPs/CS-Cu2+ complex with Cu2+/−NH2 molar ratio of 0.5/1. Results showed that the nematicidal activity of the SNPs/CS-Cu2+ complex was higher than that of the CS-Cu2+ complex, particularly the 50 % lethal dose (LC50) after 48 h of treatment was 77 and 89 mg/L, respectively. The results demonstrated that the prepared SNPs/CS-Cu2+ complex can be used as a nematicide for plants.","PeriodicalId":20911,"journal":{"name":"Pure and Applied Chemistry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140972391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Capture of volatile iodine by aromatic amines solutions","authors":"Ourida Ait Ahmed, Ali Hassoon Al Taiar","doi":"10.1515/pac-2024-0205","DOIUrl":"https://doi.org/10.1515/pac-2024-0205","url":null,"abstract":"\u0000 The presence of an excessive amount of iodine, especially radioactive iodine, is dangerous to the environment. Amine solutions are the most common and technically mature class of chemical sorption used for the capture of the pollutants. The iodine vapor diffusion and release capabilities of the aromatic amine solutions have been investigated. The iodine diffusion and release experiments were examined by UV-visible spectroscopy. Many electronic spectrophotometric studies have been reported in the coordination chemistry field on complexes. Generally, these complexes were obtained by using different electron donors with various organic or metallic electron acceptors in polar and non-polar solvents. The absorption spectra of the donor, acceptors, and the resulted complexes were carried out in methanol in the region of 200–600 nm. The correlation between the spectral characteristics of molecular complexes of iodine with various aromatic amines and the ionization potentials of the donor molecules is discussed. The concentrations of the diffused iodine and the formed complex were calculated using mathematical models and calibration curves. The values of the formation constant (k\u0000 AD), molar extinction coefficient (ε\u0000 AD), and absorption band energy of complexes were estimated. The ionization potential of the donor I\u0000 D was calculated from the complex band energies. The kinetic of the above association and reverse reactions was studied, and some kinetic parameters have been estimated.","PeriodicalId":20911,"journal":{"name":"Pure and Applied Chemistry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140980531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Subhasri Bogadi, Pooja Rao, Vasudha KU, Gowthamarajan Kuppusamy, SubbaRao V. Madhunapantula, Vetriselvan Subramaniyan, Veera Venkata Satyanarayana Reddy Karri, Jamuna Bai Aswathanarayan
{"title":"Management of biofilm-associated infections in diabetic wounds – from bench to bedside","authors":"Subhasri Bogadi, Pooja Rao, Vasudha KU, Gowthamarajan Kuppusamy, SubbaRao V. Madhunapantula, Vetriselvan Subramaniyan, Veera Venkata Satyanarayana Reddy Karri, Jamuna Bai Aswathanarayan","doi":"10.1515/pac-2023-1117","DOIUrl":"https://doi.org/10.1515/pac-2023-1117","url":null,"abstract":"Biofilms are complex bacterial colonies embedded in an extracellular matrix. These pose a major obstacle to wound healing and are noticeable in chronic wounds. It protects the bacteria from the host’s immune system and conventional antibiotic treatments. The biofilm’s protective matrix prevents essential nutrients and oxygen from diffusing into the surrounding healthy tissue. In addition, microbes living in biofilms naturally have increased resistance to antibiotics, which reduces the effectiveness of traditional therapies. As such, biofilms serve as persistent reservoirs of infection, which further disrupts the normal course of wound healing. In this review, the current formulation strategies such as hydrogels, polymeric nanoparticles, and nanofibers that are used in wound healing to counteract biofilms have been comprehensively discussed. The formulations have been meticulously designed and developed to disturb the biofilm matrix, prevent the growth of microorganisms, and increase the potency of antimicrobials and antibiotics. The mechanism of action, advantages and limitations associated with the existing formulation strategies have been reviewed. The formulation strategies that have been translated into clinical applications and patented are also discussed in this paper.","PeriodicalId":20911,"journal":{"name":"Pure and Applied Chemistry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anastasia I. Ioannou, Demetris E. Apostolides, Costas S. Patrickios
{"title":"Randomly cross-linked amphiphilic copolymer networks of n-butyl acrylate and N,N-dimethylacrylamide: synthesis and characterization","authors":"Anastasia I. Ioannou, Demetris E. Apostolides, Costas S. Patrickios","doi":"10.1515/pac-2024-0201","DOIUrl":"https://doi.org/10.1515/pac-2024-0201","url":null,"abstract":"Five randomly cross-linked amphiphilic copolymer networks (ACPN) were prepared via the free radical cross-linking copolymerization of the hydrophobic <jats:italic>n</jats:italic>-butyl acrylate (BuA) and the hydrophilic <jats:italic>N</jats:italic>,<jats:italic>N</jats:italic>-dimethylacrylamide (DMAAm), in the presence of a small amount (5 mol% with respect to the sum of BuA plus DMAAm monomers) of the hydrophobic 1,6-hexanediol diacrylate (HexDA) cross-linker, initiated by 4,4ʹ-azobis(4-cyanovaleric acid) in 1,4-dioxane at a 10 % w/v total monomer concentration. The five ACPNs differed in their BuA content, fixed at 10, 30, 50, 70 and 90 mol%. The two homopolymer networks, BuA and DMAAm, were also prepared using the same polymerization method. Thus, this study involved a total of seven polymer networks, forming a homologous series with BuA contents ranging from 0 to 100 mol%. These networks were characterized in terms of their degrees of swelling in tetrahydrofuran (THF) and water, their mechanical properties in water, and their adhesion to human skin. The degrees of swelling (DS) of the networks in THF were higher than those in water because THF is a non-selective solvent, whereas water is selective for the hydrophilic DMAAm units. The DSs in THF increased with the network content in the less polar BuA units, while the opposite was true for the DSs in water which decreased with the content in the hydrophobic BuA units from 11 (0 mol% BuA) down to 1.1 (100 mol% BuA). A maximum in the elastic modulus was observed for the hydrogel with 50 mol% BuA, reflecting the opposing effects of polymer composition in soft polymer (polyBuA) content and hydrogel water content. In contrast, the tensile strain at break increased monotonically with the hydrogel BuA content, reaching a remarkable ∼900 % for the hydrogel with 90 mol% BuA. Finally, the adhesion of the ACPNs, both in their dried and hydrated states, onto human skin was explored. The adhesion of the hydrated samples onto skin was stronger than that of the dried ones. The hydrated ACPN with 30 mol% BuA exhibited the strongest adhesion onto skin, attributable to the best combination of a rather high content in polar DMAAm units (70 mol%), and a rather low aqueous DS (∼2.5), with the low DS value causing only a small dilution in the DMAAm units participating in the polar interactions with skin. The present work demonstrates that, even in this synthetically simple ACPN system, the multiple effects of ACPN composition on a certain property, in some cases opposing and in some other cooperating, lead to a rather complicated behavior. In particular, as the BuA content increases, some properties display maxima (elastic modulus, stress at break and fracture energy of hydrated ACPNs, and adhesion of hydrated ACPNs onto skin) while some other properties exhibit monotonic increases (strain at break of hydrated ACPNs, and adhesion of dried ACPNs onto skin). Thus, the optimal ACPN for a particular application will h","PeriodicalId":20911,"journal":{"name":"Pure and Applied Chemistry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electrodeposition behaviour of samarium in 1,3-dimethyl-2-imidazolidone solvent","authors":"Chrysanthus Andrew, Jayakumar Mani","doi":"10.1515/pac-2024-0110","DOIUrl":"https://doi.org/10.1515/pac-2024-0110","url":null,"abstract":"The present study investigates the electrochemistry spectroscopy of Sm(III), and electrodeposition of samarium metal in neutral ligand-based ionic liquid (solvate ionic liquid). Mixture consisted of a samarium precursor (either samarium triflate or samarium nitrate hexahydrate) in the solvate ionic liquid, 1.3-dimethyl-2-imidazolidone (DMI). FT-IR analysis of Sm(III)-DMI electrolytes indicates that Sm<jats:sup>3+</jats:sup> ion coordinates with DMI through carbonyl group (C=O); the band splits into two with emergence of new peak at 1630 cm<jats:sup>−1</jats:sup> and 1649 cm<jats:sup>−1</jats:sup> for the triflate and nitrate solutions, respectively. Raman spectroscopy also confirms the solvation of Sm(III) with DMI through oxygen atom of the carbonyl group. Voltametric behaviour of Sm(III) ion indicates two-step reduction mechanism <jats:italic>via</jats:italic> Sm(III)/Sm(II) at <jats:italic>ca.</jats:italic> −2.0 V and Sm(II)/Sm(0) at <jats:italic>ca.</jats:italic> −3.0 V vs. Ag/Ag<jats:sup>+</jats:sup> for both samarium(III)-containing electrolytes. Diffusion coefficient value of Sm(III) was determined to be 2.185 × 10<jats:sup>−6</jats:sup> cm<jats:sup>2</jats:sup>/s and 2.418 × 10<jats:sup>−8</jats:sup> cm<jats:sup>2</jats:sup>/s for triflate and nitrate electrolytes, respectively. Electrodeposition of samarium was achieved through constant potential electrolysis using copper substrate as the working electrode which yielded compact deposits from triflate-DMI and non-uniform granular deposit from nitrate-DMI electrolyte. <jats:italic>Ex situ</jats:italic> X-ray photoelectron spectroscopy analysis of the as-deposited samples revealed the presence of metallic Sm (1081 eV) co-existing with its oxide form (1083 eV).","PeriodicalId":20911,"journal":{"name":"Pure and Applied Chemistry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yetunde Bunmi Oyeyiola, Francis Bayo Lewu, Beatrice Olutoyin Opeolu
{"title":"Nitrogen leaching mitigation by tithonia biochar (Tithochar) in urea fertilizer treated sandy soil","authors":"Yetunde Bunmi Oyeyiola, Francis Bayo Lewu, Beatrice Olutoyin Opeolu","doi":"10.1515/pac-2023-1137","DOIUrl":"https://doi.org/10.1515/pac-2023-1137","url":null,"abstract":"Nitrogenous fertilizer drift from farmlands accelerates nitrogen loads in groundwaters. Biochar potential to mitigate nitrogen leaching in urea treated sandy soil was monitored in a four weeks screenhouse leaching column experiment. The trial was a factorial combination of two biochar types (B1 and B2 applied at 5 t/ha) and two urea treatments (with urea at 120 kg/ha and without urea) laid in completely randomized design with three replications. Control that received neither urea nor biochar was compared. Four weekly leaching events were conducted in each leaching column containing 300 g soil amended with appropriate treatments. <jats:italic>Amaranthus hybridus</jats:italic> was the test crop. The NH<jats:sub>4</jats:sub>-N and NO<jats:sub>3</jats:sub>-N leached were generally highest during the week 2 leaching event such that total NO<jats:sub>3</jats:sub>-N leached was 427.3 % higher than total NH<jats:sub>4</jats:sub>-N leached with highest contributions from sole urea treatment. Biochar pretreatment reduced total N leached by 9.5 (B1) and 26.8 % (B2) relative to sole urea. Percentage of N added lost to leaching was highest (34.1 %) in sole urea treatment with B1 and B2 pretreatment reducing the value by 54.5 and 46.9 % respectively. Correlation analysis revealed electrical conductivity of the leachate and soil as dominant indicators for N leached in the soil studied.","PeriodicalId":20911,"journal":{"name":"Pure and Applied Chemistry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis of potash alum from waste aluminum cans for the purification of river water","authors":"Samuel Tetteh, Nuriya Mahama","doi":"10.1515/pac-2023-1118","DOIUrl":"https://doi.org/10.1515/pac-2023-1118","url":null,"abstract":"This study explored the synthesis of potash alum from disposed aluminum cans for water purification. The effect of the labels on the cans on the yield of alum was also investigated as it is economically beneficial for industry. Single crystals of potash alum were obtained and characterized by powder X-ray diffraction (P-XRD) and Fourier transform infrared (FTIR) spectroscopy. Through a series of jar test experiments, the characterized alum samples were used to purify river water samples. Some of the parameters investigated include; pH, turbidity, total suspended solids (TSS), total dissolved solids (TDS), electrical conductivity (EC) and chemical oxygen demand (COD). The results show that the alum samples were able to reduce the turbidity by 100 % and substantially decrease the TSS, TDS and COD over the five-hour period of study. However, there were slight increases in acidity and EC which could be corrected by other methods","PeriodicalId":20911,"journal":{"name":"Pure and Applied Chemistry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluation of in vitro antioxidant activities, total phenolic and elemental contents of common herbs and spices (Moringa oleifera leaves, Allium sativum (Garlic) and Momordica charantia (ejinrin) leaves) in South-West Nigeria","authors":"Bukunola Oluyemisi Adegbesan, Esther Nkechi Ezima, Basit Opeyemi Hassan, Jeremiah Oluwasegun Kehinde, Aderinsola Ayoyemi Adewale, Ifabunmi Oduyemi Osonuga, Samuel Oluwadare Olalekan","doi":"10.1515/pac-2023-1128","DOIUrl":"https://doi.org/10.1515/pac-2023-1128","url":null,"abstract":"Natural remedies are being widely utilized in some disease’s conditions including cancer, diabetes, neurodegenerative diseases, atherosclerosis hypertension and other cardiovascular diseases. The therapeutic intervention of medicinal plants and spices cannot be overemphasized in the management and control of diseases but the exact modes of action of these herbs and plants have not been fully elucidated. This research work was designed to study the expression of selected elements, zinc (Zn), iron (Fe), copper (Cu), selenium (Se), lead (Pb) and cadmium (Cd); the phytochemical and the <jats:italic>in vitro</jats:italic> antioxidant properties of ethanolic extracts of <jats:italic>Moringa oleifera</jats:italic> leaves, <jats:italic>Allium sativum</jats:italic> (Garlic) and <jats:italic>Momordica charantia</jats:italic> (ejinrin) leaves for their potential involvement in the prevention and management of cardiovascular diseases and cancer through different chemical methods. <jats:italic>In vitro</jats:italic> antioxidant properties were assayed by investigating 2,2-diphenyl-2-picryl-hydrazyl (DPPH) free radicals scavenging potentials and Ferric Reducing Antioxidant Potential (FRAP); total phenolic content was determined by using Folin-Ciocalteu assay and the elemental contents of these extracts was investigated through the use of Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). All tests were run in triplicates and analysed. Our results revealed that the ethanolic extracts of <jats:italic>M. oleifera</jats:italic> leaves, <jats:italic>A. sativum</jats:italic> (Garlic) and <jats:italic>M. charantia</jats:italic> (ejinrin) leaves possess significant antioxidant activities and express important and beneficial elements (in marginal and trace amounts) and phytochemicals. These results suggest that the medicinal attributes of these plants may be linked to the radical scavenging abilities, beneficial elements and phytochemicals expression of their ethanolic extracts which may likely be a good direction in the area of drug discovery and development.","PeriodicalId":20911,"journal":{"name":"Pure and Applied Chemistry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stefania Siracusano, Nicola Briguglio, Fabiola Pantò, Claudio Oldani, Laila Grahl-Madsen, Daniel A. Greenhalgh, Rachel Smith, Ben Green, Gunnar Kielmann, Alexander Flat, Swen Steinigeweg, Anna Molinari, Mette Blom, Antonino S. Aricò
{"title":"Advanced polymer electrolyte membrane water electrolysis for power to gas applications","authors":"Stefania Siracusano, Nicola Briguglio, Fabiola Pantò, Claudio Oldani, Laila Grahl-Madsen, Daniel A. Greenhalgh, Rachel Smith, Ben Green, Gunnar Kielmann, Alexander Flat, Swen Steinigeweg, Anna Molinari, Mette Blom, Antonino S. Aricò","doi":"10.1515/pac-2023-1015","DOIUrl":"https://doi.org/10.1515/pac-2023-1015","url":null,"abstract":"Water electrolysis fed by renewable energy is the foremost technology to generate green hydrogen. Relevant challenges regard decrease of precious metal loadings and performance enhancement while maintaining cutting edge efficiency. Next generation electrolysers must provide dynamic behaviour to improve grid-balancing services and thus integrate with the grid the intermittent renewable energy sources. The HPEM2GAS project developed a low-cost optimised PEM electrolyser for grid management through both stack and balance of plant innovations.","PeriodicalId":20911,"journal":{"name":"Pure and Applied Chemistry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biodegradation of naphthalene using Kocuria rosea isolated from a Sawmill in Ikenne, Southwestern Nigeria","authors":"Esther Nkechi Ezima, Ayodeji Olasore Awotula, Bukunola Oluyemisi Adegbesan, Ifabunmi Oduyemi Osonuga, Georgia Chinemenwa Agu, Enitan Omobolanle Adesanya, Kuburat Temitope Odufuwa, Bamidele Sanya Fagbohunka","doi":"10.1515/pac-2023-1136","DOIUrl":"https://doi.org/10.1515/pac-2023-1136","url":null,"abstract":"Naphthalene, a common member of the polycyclic aromatic hydrocarbons (PAHs) found in various industrial applications, has garnered attention due to its genotoxic, mutagenic, and potentially carcinogenic effects on living organisms. Concerns have escalated regarding the widespread presence of naphthalene in the environment, its resistance to biodegradation, capacity for bioaccumulation, and associated adverse impacts. In response, numerous pilot treatment approaches have been explored to mitigate the economic consequences and prevent the degradation of soil and water quality resulting from naphthalene pollution. This study investigates the degradation of naphthalene using <jats:italic>Kocuria rosea</jats:italic>, a microorganism previously isolated from sawdust samples collected from a Sawmill in Ikenne, Ogun State, Southwestern Nigeria. <jats:italic>Kocuria rosea</jats:italic> was cultivated in nutrient broth (NB) for 24 h, and its growth was quantified through UV–Visible spectrophotometric analysis. The phytotoxicity of both untreated and treated naphthalene solutions was assessed by measuring their impact on the germination of <jats:italic>Zea mays</jats:italic> (corn) seeds. Furthermore, biodegradation of naphthalene was confirmed by analyzing FT-IR spectra. The results indicate that naphthalene exhibits phytotoxic effects on <jats:italic>Z. mays</jats:italic> germination, whereas treatment with the <jats:italic>Kocuria rosea</jats:italic> solution substantially increased the germination rate from 13.3 % to 46.67 %. FT-IR analysis reveals that <jats:italic>Kocuria rosea</jats:italic> effectively degrades naphthalene, as evidenced by the disappearance of characteristic peaks at 3049.56, 1593.25, 958.65, and 781.2. In conclusion, <jats:italic>Kocuria rosea</jats:italic>, isolated from a Sawmill in Ikenne, demonstrates significant potential for the bioremediation of naphthalene, offering promise as an environmentally friendly and cost-effective approach for mitigating naphthalene pollution.","PeriodicalId":20911,"journal":{"name":"Pure and Applied Chemistry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140884411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}