RadiologyPub Date : 2025-01-01DOI: 10.1148/radiol.243288
Joseph J Gemmete
{"title":"Consideration of Thermal Ablation for Secondary Hyperparathyroidism in Patients with Chronic Kidney Disease.","authors":"Joseph J Gemmete","doi":"10.1148/radiol.243288","DOIUrl":"https://doi.org/10.1148/radiol.243288","url":null,"abstract":"","PeriodicalId":20896,"journal":{"name":"Radiology","volume":"314 1","pages":"e243288"},"PeriodicalIF":12.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142954066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RadiologyPub Date : 2025-01-01DOI: 10.1148/radiol.240895
Sebastian Nowak, Benjamin Wulff, Yannik C Layer, Maike Theis, Alexander Isaak, Babak Salam, Wolfgang Block, Daniel Kuetting, Claus C Pieper, Julian A Luetkens, Ulrike Attenberger, Alois M Sprinkart
{"title":"Privacy-ensuring Open-weights Large Language Models Are Competitive with Closed-weights GPT-4o in Extracting Chest Radiography Findings from Free-Text Reports.","authors":"Sebastian Nowak, Benjamin Wulff, Yannik C Layer, Maike Theis, Alexander Isaak, Babak Salam, Wolfgang Block, Daniel Kuetting, Claus C Pieper, Julian A Luetkens, Ulrike Attenberger, Alois M Sprinkart","doi":"10.1148/radiol.240895","DOIUrl":"https://doi.org/10.1148/radiol.240895","url":null,"abstract":"<p><p>Background Large-scale secondary use of clinical databases requires automated tools for retrospective extraction of structured content from free-text radiology reports. Purpose To share data and insights on the application of privacy-preserving open-weights large language models (LLMs) for reporting content extraction with comparison to standard rule-based systems and the closed-weights LLMs from OpenAI. Materials and Methods In this retrospective exploratory study conducted between May 2024 and September 2024, zero-shot prompting of 17 open-weights LLMs was preformed. These LLMs with model weights released under open licenses were compared with rule-based annotation and with OpenAI's GPT-4o, GPT-4o-mini, GPT-4-turbo, and GPT-3.5-turbo on a manually annotated public English chest radiography dataset (Indiana University, 3927 patients and reports). An annotated nonpublic German chest radiography dataset (18 500 reports, 16 844 patients [10 340 male; mean age, 62.6 years ± 21.5 {SD}]) was used to compare local fine-tuning of all open-weights LLMs via low-rank adaptation and 4-bit quantization to bidirectional encoder representations from transformers (BERT) with different subsets of reports (from 10 to 14 580). Nonoverlapping 95% CIs of macro-averaged F1 scores were defined as relevant differences. Results For the English reports, the highest zero-shot macro-averaged F1 score was observed for GPT-4o (92.4% [95% CI: 87.9, 95.9]); GPT-4o outperformed the rule-based CheXpert [Stanford University] (73.1% [95% CI: 65.1, 79.7]) but was comparable in performance to several open-weights LLMs (top three: Mistral-Large [Mistral AI], 92.6% [95% CI: 88.2, 96.0]; Llama-3.1-70b [Meta AI], 92.2% [95% CI: 87.1, 95.8]; and Llama-3.1-405b [Meta AI]: 90.3% [95% CI: 84.6, 94.5]). For the German reports, Mistral-Large (91.6% [95% CI: 90.5, 92.7]) had the highest zero-shot macro-averaged F1 score among the six other open-weights LLMs and outperformed the rule-based annotation (74.8% [95% CI: 73.3, 76.1]). Using 1000 reports for fine-tuning, all LLMs (top three: Mistral-Large, 94.3% [95% CI: 93.5, 95.2]; OpenBioLLM-70b [Saama]: 93.9% [95% CI: 92.9, 94.8]; and Mixtral-8×22b [Mistral AI]: 93.8% [95% CI: 92.8, 94.7]) achieved significantly higher macro-averaged F1 score than did BERT (86.7% [95% CI: 85.0, 88.3]); however, the differences were not relevant when 2000 or more reports were used for fine-tuning. Conclusion LLMs have the potential to outperform rule-based systems for zero-shot \"out-of-the-box\" structuring of report databases, with privacy-ensuring open-weights LLMs being competitive with closed-weights GPT-4o. Additionally, the open-weights LLM outperformed BERT when moderate numbers of reports were used for fine-tuning. Published under a CC BY 4.0 license. <i>Supplemental material is available for this article.</i> See also the editorial by Gee and Yao in this issue.</p>","PeriodicalId":20896,"journal":{"name":"Radiology","volume":"314 1","pages":"e240895"},"PeriodicalIF":12.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142979764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RadiologyPub Date : 2025-01-01DOI: 10.1148/radiol.233029
Mehr Kashyap, Xi Wang, Neil Panjwani, Mohammad Hasan, Qin Zhang, Charles Huang, Karl Bush, Alexander Chin, Lucas K Vitzthum, Peng Dong, Sandra Zaky, Billy W Loo, Maximilian Diehn, Lei Xing, Ruijiang Li, Michael F Gensheimer
{"title":"Automated Deep Learning-Based Detection and Segmentation of Lung Tumors at CT.","authors":"Mehr Kashyap, Xi Wang, Neil Panjwani, Mohammad Hasan, Qin Zhang, Charles Huang, Karl Bush, Alexander Chin, Lucas K Vitzthum, Peng Dong, Sandra Zaky, Billy W Loo, Maximilian Diehn, Lei Xing, Ruijiang Li, Michael F Gensheimer","doi":"10.1148/radiol.233029","DOIUrl":"https://doi.org/10.1148/radiol.233029","url":null,"abstract":"<p><p><i>\"Just Accepted\" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Background Detection and segmentation of lung tumors on CT scans are critical for monitoring cancer progression, evaluating treatment responses, and planning radiation therapy; however, manual delineation is labor-intensive and subject to physician variability. Purpose To develop and evaluate an ensemble deep learning model for automating identification and segmentation of lung tumors on CT scans. Materials and Methods A retrospective study was conducted between July 2019 and November 2024 using a large dataset of CT simulation scans and clinical lung tumor segmentations from radiotherapy plans. This dataset was used to train a 3D U-Net-based, image-multiresolution ensemble model to detect and segment lung tumors on CT scans. Model performance was evaluated on internal and external test sets composed of CT simulation scans and lung tumor segmentations from two affiliated medical centers, including single primary and metastatic lung tumors. Performance metrics included sensitivity, specificity, false positive rate, and Dice similarity coefficient (DSC). Model-predicted tumor volumes were compared with physician-delineated volumes. Group comparisons were made with Wilcoxon signed-rank test or one-way ANOVA. P < 0.05 indicated statistical significance. Results The model, trained on 1,504 CT scans with clinical lung tumor segmentations, achieved 92% sensitivity (92/100) and 82% specificity (41/50) in detecting lung tumors on the combined 150-CT scan test set. For a subset of 100 CT scans with a single lung tumor each, the model achieved a median model-physician DSC of 0.77 (IQR: 0.65-0.83) and an interphysician DSC of 0.80 (IQR: 0.72-0.86). Segmentation time was shorter for the model than for physicians (mean 76.6 vs. 166.1-187.7 seconds; p<0.001). Conclusion Routinely collected radiotherapy data were useful for model training. The key strengths of the model include a 3D U-Net ensemble approach for balancing volumetric context with resolution, robust tumor detection and segmentation performance, and the ability to generalize to an external site.</p>","PeriodicalId":20896,"journal":{"name":"Radiology","volume":"314 1","pages":"e233029"},"PeriodicalIF":12.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143010649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RadiologyPub Date : 2025-01-01DOI: 10.1148/radiol.243715
Carolyn Horst
{"title":"Building Rome: TNM Lung Cancer Staging and an Illustration of the Scientific Method.","authors":"Carolyn Horst","doi":"10.1148/radiol.243715","DOIUrl":"https://doi.org/10.1148/radiol.243715","url":null,"abstract":"","PeriodicalId":20896,"journal":{"name":"Radiology","volume":"314 1","pages":"e243715"},"PeriodicalIF":12.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143010652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}