Propellants, Explosives, Pyrotechnics最新文献

筛选
英文 中文
Microencapsulation of ADN with HTPB‐based membrane in the presence of the bonding agents Tepan or Tepanol** 在粘合剂 Tepan 或 Tepanol 存在的情况下,用基于 HTPB 的膜对 ADN 进行微胶囊化**
IF 1.8 4区 工程技术
Propellants, Explosives, Pyrotechnics Pub Date : 2024-04-19 DOI: 10.1002/prep.202300289
Jessica O. Silva, Kamila P. Cardoso, Milton F. Diniz, Márcio Y. Nagamachi, Luiz F. A. Ferrão
{"title":"Microencapsulation of ADN with HTPB‐based membrane in the presence of the bonding agents Tepan or Tepanol**","authors":"Jessica O. Silva, Kamila P. Cardoso, Milton F. Diniz, Márcio Y. Nagamachi, Luiz F. A. Ferrão","doi":"10.1002/prep.202300289","DOIUrl":"https://doi.org/10.1002/prep.202300289","url":null,"abstract":"Ammonium dinitramide (ADN) has appeared as a promising oxidizer for green propellants and thereby a potential substitute for ammonium perchlorate, largely in use in composite propellants for tactical and strategic long‐range missiles. The novelty lies in replacing ammonium perchlorate with a chlorine‐free oxidizer less harmful to the health and environment. However, ADN is hygroscopic and can potentially react with other chemical components, which could be overcome by microencapsulating the particles. The simple coacervation method was tested herein to microencapsulate ADN with a membrane made of hydroxyl‐terminated polybutadiene as pre‐polymer and methylene diphenyl diisocyanate as the curing agent. The effect of polyamine bonding agents on the capsule formation was tested by adding 0.5 or 2 % of Tepan or Tepanol, whose efficacy to bond to ADN was confirmed by detecting ammonia release through infrared spectroscopy. The capsule membrane was examined by optical and scanning electron microscopy. The dissolution time and rate were the parameters adopted to quantify permeability in a straight dissolution test in water, which demonstrated that 0.5 % Tepanol can provide the most effective protection. The infrared spectroscopy indicated that 60 °C temperature for prolonged periods, normally experienced by propellants, does not chemically affect the capsules’ membrane but can turn it lumpy. In conclusion, these polyamine bonding agents can assist the capsule formation over ADN particles using the simple coacervation method, however, their functionality on mechanical properties of propellants needs to be substantiated in forthcoming works as well as the effect of the concentration of bonding agents on propellant formulations.","PeriodicalId":20800,"journal":{"name":"Propellants, Explosives, Pyrotechnics","volume":"39 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140629993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nitrogen‐doped reduced graphene oxide/Fe2O3 hybrid as efficient catalyst for ammonium nitrate 氮掺杂还原氧化石墨烯/Fe2O3 杂化物作为硝酸铵的高效催化剂
IF 1.8 4区 工程技术
Propellants, Explosives, Pyrotechnics Pub Date : 2024-04-18 DOI: 10.1002/prep.202300274
Manel Nourine, Moulai Karim Boulkadid, Sabri Touidjine, Elamine Louafi, Hamdane Akbi, Hamoud Abdelali, Moulay Yahia Zakaria, Samir Belkhiri
{"title":"Nitrogen‐doped reduced graphene oxide/Fe2O3 hybrid as efficient catalyst for ammonium nitrate","authors":"Manel Nourine, Moulai Karim Boulkadid, Sabri Touidjine, Elamine Louafi, Hamdane Akbi, Hamoud Abdelali, Moulay Yahia Zakaria, Samir Belkhiri","doi":"10.1002/prep.202300274","DOIUrl":"https://doi.org/10.1002/prep.202300274","url":null,"abstract":"In this investigation, we successfully synthesized a hybrid material, N‐rGO@Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>, via a one‐step hydrothermal process, comprising nitrogen‐doped reduced graphene oxide and α‐Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>. Thorough characterization using diverse analytical methods validated its structure. Employing this hybrid composite as a catalyst, we studied its efficacy in the catalytic thermal decomposition of ammonium nitrate (AN). The N‐rGO@Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>/AN composite was prepared using a recurrent spray coating method with 3 % mass of the hybrid material. Thermo‐gravimetric (TG) and differential scanning calorimetric (DSC) analyses were employed to investigate the catalytic effect. Computational assessment of Arrhenius parameters was conducted through isoconversional kinetic approaches. Results from the kinetic analysis allowed the determination of the critical ignition temperature. Furthermore, calorific values for pure AN and N‐rGO@Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>/AN were measured using an oxygen calorimetric bombe, revealing a 41 % reduction in activation energy barrier and a lowering of the critical ignition temperature from 292 °C to 283 °C upon incorporation of the hybrid material. Notably, the surface modification of AN with N‐rGO@Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> resulted in an increase of 1440 J/g in the observed calorific values. These findings highlight the potential of N‐rGO@Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> as an effective catalyst, offering promising implications for applications in enhancing ammonium nitrate thermal decomposition.","PeriodicalId":20800,"journal":{"name":"Propellants, Explosives, Pyrotechnics","volume":"216 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140623324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Forthcoming Meetings: Prop., Explos., Pyrotech. 4/2024 即将召开的会议:Prop.4/2024
IF 1.8 4区 工程技术
Propellants, Explosives, Pyrotechnics Pub Date : 2024-04-17 DOI: 10.1002/prep.202480498
{"title":"Forthcoming Meetings: Prop., Explos., Pyrotech. 4/2024","authors":"","doi":"10.1002/prep.202480498","DOIUrl":"https://doi.org/10.1002/prep.202480498","url":null,"abstract":"","PeriodicalId":20800,"journal":{"name":"Propellants, Explosives, Pyrotechnics","volume":"98 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140612245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Munitions underwater – a problem for today 水下弹药--当今的一个问题
IF 1.8 4区 工程技术
Propellants, Explosives, Pyrotechnics Pub Date : 2024-04-17 DOI: 10.1002/prep.202400052
Adam Cumming
{"title":"Munitions underwater – a problem for today","authors":"Adam Cumming","doi":"10.1002/prep.202400052","DOIUrl":"https://doi.org/10.1002/prep.202400052","url":null,"abstract":"","PeriodicalId":20800,"journal":{"name":"Propellants, Explosives, Pyrotechnics","volume":"100 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140612034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Picture: Munitions underwater – a problem for today (Prop., Explos., Pyrotech. 4/2024) 封面图片:水下弹药--当今的一个问题(道具、爆炸、烟火 4/2024)
IF 1.8 4区 工程技术
Propellants, Explosives, Pyrotechnics Pub Date : 2024-04-17 DOI: 10.1002/prep.202480401
Adam Cumming
{"title":"Cover Picture: Munitions underwater – a problem for today (Prop., Explos., Pyrotech. 4/2024)","authors":"Adam Cumming","doi":"10.1002/prep.202480401","DOIUrl":"https://doi.org/10.1002/prep.202480401","url":null,"abstract":"","PeriodicalId":20800,"journal":{"name":"Propellants, Explosives, Pyrotechnics","volume":"173 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140611935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contents: Prop., Explos., Pyrotech. 4/2024 内容:Prop.4/2024
IF 1.8 4区 工程技术
Propellants, Explosives, Pyrotechnics Pub Date : 2024-04-17 DOI: 10.1002/prep.202480411
{"title":"Contents: Prop., Explos., Pyrotech. 4/2024","authors":"","doi":"10.1002/prep.202480411","DOIUrl":"https://doi.org/10.1002/prep.202480411","url":null,"abstract":"","PeriodicalId":20800,"journal":{"name":"Propellants, Explosives, Pyrotechnics","volume":"57 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140612449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Future Articles: Prop., Explos., Pyrotech. 5/2024 未来文章:Prop.5/2024
IF 1.8 4区 工程技术
Propellants, Explosives, Pyrotechnics Pub Date : 2024-04-17 DOI: 10.1002/prep.202480499
{"title":"Future Articles: Prop., Explos., Pyrotech. 5/2024","authors":"","doi":"10.1002/prep.202480499","DOIUrl":"https://doi.org/10.1002/prep.202480499","url":null,"abstract":"","PeriodicalId":20800,"journal":{"name":"Propellants, Explosives, Pyrotechnics","volume":"5 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140611865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Processing of reactive Ni−Al powders via the LabRAM** 通过 LabRAM 加工活性镍铝粉**
IF 1.8 4区 工程技术
Propellants, Explosives, Pyrotechnics Pub Date : 2024-04-11 DOI: 10.1002/prep.202300192
Madilyn R. Jerke, Grant A. Crawford, Lori J. Groven
{"title":"Processing of reactive Ni−Al powders via the LabRAM**","authors":"Madilyn R. Jerke, Grant A. Crawford, Lori J. Groven","doi":"10.1002/prep.202300192","DOIUrl":"https://doi.org/10.1002/prep.202300192","url":null,"abstract":"Reactive Ni−Al materials have been developed using a variety of methods, with high energy ball milling (HEBM) being one of the most common means for tailoring reaction behavior. Powder production limitations associated with HEBM, including the addition of process control agents, have inspired the exploration of an alternate manufacturing technique: acoustic dry milling with the Resodyn Laboratory Resonant Acoustic Mixer (LabRAM). The influence of acoustic milling time, intensity, and media size with respect to microstructure and reactive behavior of Ni−Al powders were evaluated in this work. After just 20 min of milling, a reactive composite Ni−Al microstructure was produced. Milling intensity and media size were directly proportional to the formation of more homogeneous composite powders. The reaction onset temperature was decreased to 446 °C, or ≈200 °C lower than that of unprocessed material. The method shows promise for the production of reactive powder for a host of applications.","PeriodicalId":20800,"journal":{"name":"Propellants, Explosives, Pyrotechnics","volume":"48 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140594293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A constitutive model of solid propellants considering aging and confinement pressure 考虑老化和约束压力的固体推进剂构成模型
IF 1.8 4区 工程技术
Propellants, Explosives, Pyrotechnics Pub Date : 2024-03-27 DOI: 10.1002/prep.202300286
Pengju Qin, Taotao Zhang, Xiangyu Zhang, Baolin Sha, Jinyou Xiao, Lihua Wen, Ming Lei, Xiao Hou
{"title":"A constitutive model of solid propellants considering aging and confinement pressure","authors":"Pengju Qin, Taotao Zhang, Xiangyu Zhang, Baolin Sha, Jinyou Xiao, Lihua Wen, Ming Lei, Xiao Hou","doi":"10.1002/prep.202300286","DOIUrl":"https://doi.org/10.1002/prep.202300286","url":null,"abstract":"Aging during storage and confinement pressure during launch are the two major loading conditions that affect the integrity of solid rocket motors. In comparison to other component materials, solid propellants, as highly filled composites, have a low modulus and fracture toughness and are therefore common sources of failure. The key to improving the integrity of the solid rocket motor is in assessing the health of the solid propellants during storage or launch. To address this issue, we revised the previous model for the progressive damage viscoelasticity of solid propellants to include the effect of chemical aging during storage and the influence of confinement pressure during launch. Specifically, the increase in relaxation time due to aging and the nonequilibrium volume dilatation characteristics under triaxial tension and compression of solid propellants have been considered. To validate the developed model, standard relaxation tests and uniaxial tensile tests on solid propellants without aging were used to calibrate the model parameters. Furthermore, the model was validated by comparison with uniaxial tensile tests under confined pressure after aging and well predicts the aging temperature/time-dependent mechanical responses of solid propellants. After validation, the developed model was used to study the influence of confinement pressure on microscopic damage evolution and macroscopic volume expansion. Overall, the developed model can be used for the analysis of the integrity of the solid rocket motor after the aging process.","PeriodicalId":20800,"journal":{"name":"Propellants, Explosives, Pyrotechnics","volume":"24 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140301620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An empirical confinement model for ANFO explosive 核燃料爆炸物的经验封闭模型
IF 1.8 4区 工程技术
Propellants, Explosives, Pyrotechnics Pub Date : 2024-03-27 DOI: 10.1002/prep.202300343
Muhamed Suceska, Vjecislav Bohanek, Ivana Dobrilovic, Vinko Skrlec
{"title":"An empirical confinement model for ANFO explosive","authors":"Muhamed Suceska, Vjecislav Bohanek, Ivana Dobrilovic, Vinko Skrlec","doi":"10.1002/prep.202300343","DOIUrl":"https://doi.org/10.1002/prep.202300343","url":null,"abstract":"Ammonium-nitrate-fuel-oil (ANFO) explosive, one of the most used mining explosives, exhibits highly non-ideal behaviour. The non-ideality of the detonation is manifested in the strong dependence of the detonation velocity on the charge radius and existence and the characteristics of confinement. This can lead to the detonation velocities as low as one-third of the ideal velocity. The literature reported experimental detonation velocities of cylindrical ANFO charges confined in different confiners (aluminium, copper, steel, polymethyl methacrylate, and polyvinyl chloride) are analysed in this paper. An empirical confinement model, which relates the detonation velocity to the charge radius and the mass of the confiner to the mass of explosive ratio per unit length, is proposed. The model predicts the detonation velocity of unconfined and confined ANFO charges with a mean average percentage error of 8.8 %.","PeriodicalId":20800,"journal":{"name":"Propellants, Explosives, Pyrotechnics","volume":"12 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140301936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信