Madilyn R. Jerke, Grant A. Crawford, Lori J. Groven
{"title":"Processing of reactive Ni−Al powders via the LabRAM**","authors":"Madilyn R. Jerke, Grant A. Crawford, Lori J. Groven","doi":"10.1002/prep.202300192","DOIUrl":null,"url":null,"abstract":"Reactive Ni−Al materials have been developed using a variety of methods, with high energy ball milling (HEBM) being one of the most common means for tailoring reaction behavior. Powder production limitations associated with HEBM, including the addition of process control agents, have inspired the exploration of an alternate manufacturing technique: acoustic dry milling with the Resodyn Laboratory Resonant Acoustic Mixer (LabRAM). The influence of acoustic milling time, intensity, and media size with respect to microstructure and reactive behavior of Ni−Al powders were evaluated in this work. After just 20 min of milling, a reactive composite Ni−Al microstructure was produced. Milling intensity and media size were directly proportional to the formation of more homogeneous composite powders. The reaction onset temperature was decreased to 446 °C, or ≈200 °C lower than that of unprocessed material. The method shows promise for the production of reactive powder for a host of applications.","PeriodicalId":20800,"journal":{"name":"Propellants, Explosives, Pyrotechnics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Propellants, Explosives, Pyrotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/prep.202300192","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Reactive Ni−Al materials have been developed using a variety of methods, with high energy ball milling (HEBM) being one of the most common means for tailoring reaction behavior. Powder production limitations associated with HEBM, including the addition of process control agents, have inspired the exploration of an alternate manufacturing technique: acoustic dry milling with the Resodyn Laboratory Resonant Acoustic Mixer (LabRAM). The influence of acoustic milling time, intensity, and media size with respect to microstructure and reactive behavior of Ni−Al powders were evaluated in this work. After just 20 min of milling, a reactive composite Ni−Al microstructure was produced. Milling intensity and media size were directly proportional to the formation of more homogeneous composite powders. The reaction onset temperature was decreased to 446 °C, or ≈200 °C lower than that of unprocessed material. The method shows promise for the production of reactive powder for a host of applications.
期刊介绍:
Propellants, Explosives, Pyrotechnics (PEP) is an international, peer-reviewed journal containing Full Papers, Short Communications, critical Reviews, as well as details of forthcoming meetings and book reviews concerned with the research, development and production in relation to propellants, explosives, and pyrotechnics for all applications. Being the official journal of the International Pyrotechnics Society, PEP is a vital medium and the state-of-the-art forum for the exchange of science and technology in energetic materials. PEP is published 12 times a year.
PEP is devoted to advancing the science, technology and engineering elements in the storage and manipulation of chemical energy, specifically in propellants, explosives and pyrotechnics. Articles should provide scientific context, articulate impact, and be generally applicable to the energetic materials and wider scientific community. PEP is not a defense journal and does not feature the weaponization of materials and related systems or include information that would aid in the development or utilization of improvised explosive systems, e.g., synthesis routes to terrorist explosives.