{"title":"Improving Properties of Dynamic Vulcanized Polyurethane and Silicone Rubber Elastomer through Controlling Interphase Layer","authors":"Lei Caihong, Xu Ruijie, Luo Xiaogang, Xie Jiayi","doi":"10.1080/03602559.2017.1410837","DOIUrl":"https://doi.org/10.1080/03602559.2017.1410837","url":null,"abstract":"ABSTRACT In this work, a new kind of compatibilizer was prepared through the reaction between hyperbranched polyurethane and isocyanate-modified silicone oil and its application in the dynamic vulcanized polyurethane and silicone rubber elastomer was investigated. Compared with that of dynamic vulcanized thermoplastic polyurethane (TPU)/silicone rubber elastomer without compatibilizer, the introduction of 3% silicone-modified hyperbranched polyurethane lead to the increase in tensile strength from 8.1 to 13.9 MPa and the tear strength from 56.2 to 75.2 kN/m. The introduction of silicone-modified hyperbranched polyurethane as an interphase layer controller leads to the improvement in properties of TPU/silicone rubber elastomer. GRAPHICAL ABSTRACT","PeriodicalId":20629,"journal":{"name":"Polymer-Plastics Technology and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85359628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Elango, M. Deepa, R. Subramanian, A. Mohamed Musthafa
{"title":"Synthesis, Characterization, and Antibacterial Activity of Polyindole/Ag–Cuo Nanocomposites by Reflux Condensation Method","authors":"M. Elango, M. Deepa, R. Subramanian, A. Mohamed Musthafa","doi":"10.1080/03602559.2017.1410832","DOIUrl":"https://doi.org/10.1080/03602559.2017.1410832","url":null,"abstract":"ABSTRACT Polyindole-based silver and copper oxide (polyindole/Ag–CuO) nanocomposites were synthesized using reflux condensation method by varying the concentrations of polyindole and silver nitrate with copper oxide in N2 atmosphere. They were characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), and scanning electron microscope (SEM) techniques. The SEM images revealed fascinating shapes of CuO nanoparticles. The FTIR and XRD confirmed the functional group transformation and crystalline natures of silver and CuO existed in the nanocomposites. The polyindole/Ag–CuO nanocomposites were examined for antibacterial activity and found to exhibit the antibacterial activity against pathogenic bacteria. GRAPHICAL ABSTRACT","PeriodicalId":20629,"journal":{"name":"Polymer-Plastics Technology and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88695287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reinforcement Mechanism of Carbon Black (CB) in Natural Rubber Vulcanizates: Relationship Between CB Aggregate and Network Structure and Viscoelastic Properties","authors":"A. Kato, Y. Ikeda, S. Kohjiya","doi":"10.1080/03602559.2017.1381257","DOIUrl":"https://doi.org/10.1080/03602559.2017.1381257","url":null,"abstract":"ABSTRACT Carbon black (CB) aggregates in CB-filled natural rubber (NR) vulcanizate were joined together and formed CB aggregates in the CB region less than 20 phr. It was found that the viscoelastic behavior was related to the hydrodynamic interaction between CB aggregate and NR matrix. In the CB loading region more than 40 phr, CB aggregates formed CB network structure in it. Using the parallel mechanical model of the two phases of a rubber matrix and an immobilized CB/NR interfacial layer excluding a CB phase, it was possible to quantitatively explain the relationship between the viscoelastic behavior of CB network structure. GRAPHICAL ABSTRACT","PeriodicalId":20629,"journal":{"name":"Polymer-Plastics Technology and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86936415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preparation and Properties of Anionic nylon-6-b-Polyether Amine Copolymers with Varying Soft Chain Length","authors":"Sheng Xu, Zhenxi Wang, Meng Cao, Xin Dai, Shangxi Zhang, Lingli Liu","doi":"10.1080/03602559.2017.1381258","DOIUrl":"https://doi.org/10.1080/03602559.2017.1381258","url":null,"abstract":"ABSTRACT Monomer casting nylon-6-b-polyether amine (MCPA-b-PEA) copolymer were prepared through anionic polymerization which initiated by TDI-PEA macroinitiators with varying PEA molecular chain length. It was found that the TDI-PEA macroinitiator showed relatively low reactivity during the reaction process due to the long-chain PEA structure. The MCPA-b-PEA with shortest PEA chain length displayed highest crystallinity and biggest spherulites with large crystal grain size. The copolymers with long PEA chain length showed obvious toughness characteristic while that with short PEA chain length presented high tensile strength. The toughening mechanism was deduced to the combination of craze-shear band mechanism and multilayer crack extension mechanism. GRAPHICAL ABSTRACT","PeriodicalId":20629,"journal":{"name":"Polymer-Plastics Technology and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88170469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Vásquez‐Rendón, Natalia Sánchez-Arrieta, M. Álvarez‐Láinez
{"title":"Two-Step Processing Method for Blending High-Performance Polymers with Notable Thermal and Rheological Differences: PEI and PBT","authors":"M. Vásquez‐Rendón, Natalia Sánchez-Arrieta, M. Álvarez‐Láinez","doi":"10.1080/03602559.2017.1381256","DOIUrl":"https://doi.org/10.1080/03602559.2017.1381256","url":null,"abstract":"ABSTRACT Blends between high-performance polymers (HPP) are barely studied, especially those produced by melting processing. In this work, it is proposed a novel methodology to prepare blends between polymers with notable processing temperature differences: poly(ether imide) (PEI) and poly(butylene terephthalate) (PBT). Processing parameters are settled after thermal and rheological evaluation of pure materials, those results suggest these blends need to be produced by steps. It is found a synergistic effect such as lowering PEI processing temperature and reducing PBT hydrolysis at high temperatures. Propose methodology allows to produce blends between HPP in the whole composition range with the same processing conditions. GRAPHICAL ABSTRACT","PeriodicalId":20629,"journal":{"name":"Polymer-Plastics Technology and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87973191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Navidfar, A. Sancak, Kemal Yıldırım, L. Trabzon
{"title":"A Study on Polyurethane Hybrid Nanocomposite Foams Reinforced with Multiwalled Carbon Nanotubes and Silica Nanoparticles","authors":"A. Navidfar, A. Sancak, Kemal Yıldırım, L. Trabzon","doi":"10.1080/03602559.2017.1410834","DOIUrl":"https://doi.org/10.1080/03602559.2017.1410834","url":null,"abstract":"ABSTRACT Multifunctional polyurethane foams reinforced with multiwalled carbon nanotubes and silica nanoparticles enhanced specific properties. We studied the effects of nanoparticle addition into polyurethane on mechanical properties and thermal stability by means of tensile, Charpy impact, hardness tests, and thermogravimetric analysis. Nanoparticles added to polyurethane are multiwalled carbon nanotubes, two types of silica nanoparticles, and multiwalled carbon nanotube/spherical silica as hybrid filler. Hybrid polyurethane/spherical silica/multiwalled carbon nanotube nanocomposite with the constant overall content of 0.75 wt% showed higher tensile strength, hardness, and thermal stability than either of nanoparticles at this content, which approves a synergistic effect between multiwalled carbon nanotubes and silica nanoparticles. GRAPHICAL ABSTRACT","PeriodicalId":20629,"journal":{"name":"Polymer-Plastics Technology and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74753004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nanostarch Reinforced with Chitosan/Poly (vinyl pyrrolidone) Blend for In Vitro Wound Healing Application","authors":"R. Poonguzhali, S. K. Basha, V. S. Kumari","doi":"10.1080/03602559.2017.1381255","DOIUrl":"https://doi.org/10.1080/03602559.2017.1381255","url":null,"abstract":"ABSTRACT Nanostarch, which is inexpensive and environmentally abundant, has been used as filler to prepare biocompatible films. The bio-nanocomposites were synthesized by solution casting method. TEM analysis proves that the average particle size of the nanostarch is in the range of 20–40 nm. Thermal stability and cell viability of CS/PVP matrix were best enhanced at 1% of nanostarch loading. The antibacterial activity exhibited by CPS bio-nanocomposite against Staphylococcus aureus and Pseudomonas aeruginosa and synergistic effects of CPS such as barrier properties, swelling properties, and better blood compatibility make it a suitable material for in vitro wound healing application. GRAPHICAL ABSTRACT","PeriodicalId":20629,"journal":{"name":"Polymer-Plastics Technology and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91003389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haryanto, N. Nurulita, E. Sundhani, P. Huh, S. Kim
{"title":"Effect of Molecular Weight of Poly(Ethylene Glycol) Dicarboxylate on the Properties of Cross-Linked Hydrogel Film as an Antiadhesion Barrier","authors":"Haryanto, N. Nurulita, E. Sundhani, P. Huh, S. Kim","doi":"10.1080/03602559.2017.1381254","DOIUrl":"https://doi.org/10.1080/03602559.2017.1381254","url":null,"abstract":"ABSTRACT Poly(ethylene glycol) dicarboxylate (PEGDC)/poly(ethylene oxide) (PEO) cross-linked hydrogel films were developed as an antiadhesion barrier using an e-beam. The effects of molecular weight of PEGDC on hydrogel properties were investigated. The decrease in molecular weight of PEGDC increased the gel fraction and tissue adhesion, whereas the mechanical strength did not change considerably. On the other hand, the swelling ratio decreased rapidly with decreasing molecular weight of PEGDC. The cytotoxicity of PEGDC (2000 or 3000) was low, whereas that of PEGDC (1000) was higher. In animal studies, all hydrogels showed a better antiadhesive effect compared to the control. GRAPHICAL ABSTRACT","PeriodicalId":20629,"journal":{"name":"Polymer-Plastics Technology and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86207454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Doped Poly(m-phenylenediamine-co-aniline) (P(mPD-co-ANI)): Synthesis, Characterization, Physical Properties, and Precursor for CuO Nanoparticles","authors":"N. Hosny, M. Badr, F. El-Dossoki","doi":"10.1080/03602559.2017.1410836","DOIUrl":"https://doi.org/10.1080/03602559.2017.1410836","url":null,"abstract":"ABSTRACT Poly(m-phenylenediamine-co-aniline) P(mPD-co-ANI) and Mn-, Ni-, and Cu-doped poly(m-phenylenediamine-co-aniline) (M-P(mPD-co-ANI)) have been synthesized and characterized. Cu-P(mPD-co-ANI) has been used as a molecular precursor of CuO nanoparticles. The spectral, optical, refractive index, solubility, and thermal properties of the synthesized polymers have been measured and discussed. The optical bandgap (Eg) measurements indicated that Ni(P(mPD-co-ANI)) has wider optical band than the pure (P(mPD-co-ANI)). Calcination of Cu-P(mPD-co-ANI) at 600°C produced (CuO) nanoparticles. The obtained nanoparticles have been characterized by XRD and TEM. The average size of CuO nanoparticles was found to be 42 nm. The refractive index measurements indicate slight change in the refractive index values of the polymer solution than that of pure solvent. The solubility of the synthesized polymers in ethanol, dimethyl formamide (DMF)–aqueous mixed solvents was found to increase as the mole fractions of both ethanol and DMF increase. The UV spectra of the synthesized polymers in ethanol, DMF–aqueous mixed solvents indicate blueshift and hyperchromic effect. GRAPHICAL ABSTRACT","PeriodicalId":20629,"journal":{"name":"Polymer-Plastics Technology and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78719043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Manoharan, Tuhin Chatterjee, S. Pal, N. Das, K. Naskar
{"title":"Studies on Interfacial Characteristics of Highly Dispersible Silica Reinforced Epoxidized Natural Rubber Compounds","authors":"P. Manoharan, Tuhin Chatterjee, S. Pal, N. Das, K. Naskar","doi":"10.1080/03602559.2017.1410833","DOIUrl":"https://doi.org/10.1080/03602559.2017.1410833","url":null,"abstract":"ABSTRACT The present work examines the effect of two different specific surface areas of highly dispersible silica (HDS)-reinforced epoxidized natural rubber (ENR) composites. The influences of different blend ratio between ENRs consisting 25 and 50 mol% of epoxidation-based (ENR-25/ENR-50) composites was studied in detail. The primary objective is to investigate the interfacial area of HDS surface involved in filler-to-rubber interaction mechanisms for the better reinforcement. Notable improvement in overall properties of these green composites are corroborated with various meticulous characterization including cure characteristics, specific bound rubber content, physicomechanical, dynamic mechanical properties, etc. Increasing the specific surface area of HDS and their subsequent interface with ENR matrix invokes its superior dispersion. Small angle X-ray scattering (SAXS) has been used to analyze the particles network and clusters establishment in green composites. The present SAXS method provides a unique insight into the cluster formation according to the Beaucage model. However, SAXS results demonstrate that particles networks can be effectively suppressed by increasing specific surface area of HDS. GRAPHICAL ABSTRACT","PeriodicalId":20629,"journal":{"name":"Polymer-Plastics Technology and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86163925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}