Polymer Testing最新文献

筛选
英文 中文
Fabrication of advanced polyphenylene sulfide composites by in-situ grafting of sulfide silane and PCPA on glass fibers 通过在玻璃纤维上原位接枝硫化硅烷和聚对苯二甲酸乙二醇酯,制造先进的聚苯硫醚复合材料
IF 5 2区 材料科学
Polymer Testing Pub Date : 2024-11-08 DOI: 10.1016/j.polymertesting.2024.108633
Youngsung Cho , Jangwoo Cho , Jooheon Kim
{"title":"Fabrication of advanced polyphenylene sulfide composites by in-situ grafting of sulfide silane and PCPA on glass fibers","authors":"Youngsung Cho ,&nbsp;Jangwoo Cho ,&nbsp;Jooheon Kim","doi":"10.1016/j.polymertesting.2024.108633","DOIUrl":"10.1016/j.polymertesting.2024.108633","url":null,"abstract":"<div><div>The energy crisis has driven increased adoption of electric vehicles (EVs) in the automotive sector, with a focus on lightweight engineering plastics (EPs) for fuel efficiency. This study aims to enhance the mechanical properties and thermal conductivity of EPs to address heat-related concerns in EVs and electronic devices. A hybrid filler (milled glass fiber, boron nitride, and graphene oxide) was introduced to polyphenylene sulfide (PPS), using a simultaneous grafting process with poly(catechol/polyamine) (PCPA) and silane additives. Filler aggregation in the resin matrix was overcome with surface-treatment agents such as Bis[3-(triethoxysilyl)propyl] tetrasulfide (Si69), catechol, and tetraethylenepentamine. PCPA polymerization on the filler surfaces bridged connections between fillers and silane molecules. The resulting surface-treated hybrid composite showed a 637 % increase in thermal conductivity (2.102 Wm<sup>−1</sup>K<sup>−1</sup>) and a 63.94 % increase in tensile strength (65.87 MPa) compared to the base matrix. Incorporating 40 wt% surface-treated mGF, 30 wt% raw BN, and 6 wt% surface-treated GO, along with PCPA and Si69 treatments, achieved this improvement. The hybrid filler composites significantly enhanced thermal conductivity and mechanical properties, providing a rapid and convenient solution to challenges in robustness and heat dissipation for electronic vehicles and devices.</div></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"141 ","pages":"Article 108633"},"PeriodicalIF":5.0,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microdroplet pull-out testing: Significance of fiber fracture results 微滴拉拔测试:纤维断裂结果的意义
IF 5 2区 材料科学
Polymer Testing Pub Date : 2024-11-08 DOI: 10.1016/j.polymertesting.2024.108631
Donghyen Lee , Jong-Hyun Kim , Seung Jun Lee , Mantae Kim , Dong-Jun Kwon
{"title":"Microdroplet pull-out testing: Significance of fiber fracture results","authors":"Donghyen Lee ,&nbsp;Jong-Hyun Kim ,&nbsp;Seung Jun Lee ,&nbsp;Mantae Kim ,&nbsp;Dong-Jun Kwon","doi":"10.1016/j.polymertesting.2024.108631","DOIUrl":"10.1016/j.polymertesting.2024.108631","url":null,"abstract":"<div><div>Fiber reinforced composites are used in structural materials that required light weight and stiffness. The properties of the fibers or matrix are important, but the interfacial properties have a significant impact on the properties of fiber reinforced composite. In this study, the interfacial shear strength (IFSS) was measured using acrylic resin and epoxy resin as base materials. The chemical composition of acrylic and epoxy matrix materials was analyzed to predict the effects on IFSS. Additionally, IFSS was measured through a microdroplet pull-out test. The reliability of the experimental results was enhanced by applying a statistical analysis to IFSS results. In the case of epoxy, GF/epoxy exhibited higher IFSS to twice and half times than CF/epoxy specimens. It means that the surface treatment of the fibers has a significant impact on the interface. In the case of acrylic, IFSS could be measured for GF. But in the case of CF, IFSS was too low to get accurate results of IFSS. Through this research, methods to improve the accuracy of composite interfacial strength measurement experiments were examined, and the study suggested the need for standardized criteria to evaluate composite interfacial adhesion.</div></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"141 ","pages":"Article 108631"},"PeriodicalIF":5.0,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of the degradation behaviour of poly-L-lactic acid braided stents under real-time and accelerated conditions 聚左旋乳酸编织支架在实时和加速条件下的降解行为研究
IF 5 2区 材料科学
Polymer Testing Pub Date : 2024-11-07 DOI: 10.1016/j.polymertesting.2024.108632
Agnese Lucchetti , Flavia Caronna , Lison Rocher , Karl Joyce , Martin Fawdry , Olena Kudina , William Ronan , Thomas Gries , Ted J. Vaughan
{"title":"Investigation of the degradation behaviour of poly-L-lactic acid braided stents under real-time and accelerated conditions","authors":"Agnese Lucchetti ,&nbsp;Flavia Caronna ,&nbsp;Lison Rocher ,&nbsp;Karl Joyce ,&nbsp;Martin Fawdry ,&nbsp;Olena Kudina ,&nbsp;William Ronan ,&nbsp;Thomas Gries ,&nbsp;Ted J. Vaughan","doi":"10.1016/j.polymertesting.2024.108632","DOIUrl":"10.1016/j.polymertesting.2024.108632","url":null,"abstract":"<div><div>Degradation tests are a key step in the development of a bioresorbable stent. The present study focused on the degradation of bioresorbable stents made from PLLA filaments, and examined the variation of the physical, thermal, and mechanical properties of the material and the devices under both real-time and accelerated degradation conditions. Results showed that the undegraded filaments were highly crystalline and composed by both <span><math><mrow><mi>α</mi></mrow></math></span> and <span><math><mrow><msup><mi>α</mi><mo>′</mo></msup></mrow></math></span> crystalline phases, induced by both the melt spinning and heat treatment processes. The latter was shown to have an important influence on the further formation of <span><math><mrow><mi>α</mi></mrow></math></span> crystalline phase and therefore crystalline structure perfectioning. Real-time degradation tests showed that the devices maintained structural stability for up to a year, meeting the required 6-month degradation period for vascular stents. Degradation was shown to primarily affect the crystalline regions, and to cause a gradual loss of material ductility before any mass loss or decrease in crystallinity. In turn, a constant decrease of molecular weight was observed, with stent failure occurring around day 389 due to a drop in molecular weight below 10,000 g/mol. Accelerated degradation tests mirrored real-time results until mass loss began. Subsequently a slower molecular weight decrease was observed, with an increase and subsequent decrease of material crystallinity. The consistency of the data obtained between real-time and accelerated degradation before mass loss confirmed the possibility to gain insights into real-time degradation through an accelerated protocol. However, attention must be paid to the initial molecular weight of the material, which has been shown to highly influence the acceleration rate. This study provides a wide range of experimental data both on the real-time and thermally accelerated degradation behaviour of PLLA braided stents that can be used as benchmark for further studies in the field.</div></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"141 ","pages":"Article 108632"},"PeriodicalIF":5.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Classification of black plastic types by hyperspectral imaging based on long-wave infrared emission spectroscopy 基于长波红外发射光谱的高光谱成像技术对黑色塑料类型进行分类
IF 5 2区 材料科学
Polymer Testing Pub Date : 2024-11-07 DOI: 10.1016/j.polymertesting.2024.108629
Mads Nibe Larsen , Anders Løchte Jørgensen , Victor Petrunin , Jakob Kjelstrup-Hansen , Bjarke Jørgensen , Mogens Hinge
{"title":"Classification of black plastic types by hyperspectral imaging based on long-wave infrared emission spectroscopy","authors":"Mads Nibe Larsen ,&nbsp;Anders Løchte Jørgensen ,&nbsp;Victor Petrunin ,&nbsp;Jakob Kjelstrup-Hansen ,&nbsp;Bjarke Jørgensen ,&nbsp;Mogens Hinge","doi":"10.1016/j.polymertesting.2024.108629","DOIUrl":"10.1016/j.polymertesting.2024.108629","url":null,"abstract":"<div><div>Identification of black plastics poses a significant challenge in recycling due to the absorptive nature of carbon black additives. This work introduces a method where hyperspectral imaging in the long-wave infrared regime is used to distinguish between twelve samples of commercially available black plastics encompassing nine distinct polymer types. The spectral scanner comprises a scanning Fabry-Pérot interferometer and a thermal camera based on an uncooled microbolometer detector sensitive to wavelengths from 8 μm to 15 μm. A principal component model is combined with k-nearest neighbors to differentiate between plastic samples in hyperspectral images. The model successfully classifies five (PET, POM, PMMA, PA6, and PA66) out of nine black polymers, and the overall accuracy of the model is <span><math><mrow><mi>A</mi><mo>=</mo><mn>73.1</mn></mrow></math></span> %.</div></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"141 ","pages":"Article 108629"},"PeriodicalIF":5.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Innovative 3D-printed devices for water pollutant removal: Comprehensive review on printing parameters, composition, properties and performances of the latest 3D-systems 用于去除水污染物的创新三维打印设备:全面回顾最新三维系统的打印参数、组成、特性和性能
IF 5 2区 材料科学
Polymer Testing Pub Date : 2024-11-01 DOI: 10.1016/j.polymertesting.2024.108627
Roberto Scaffaro , Maria Chiara Mistretta , Marta Balsamo
{"title":"Innovative 3D-printed devices for water pollutant removal: Comprehensive review on printing parameters, composition, properties and performances of the latest 3D-systems","authors":"Roberto Scaffaro ,&nbsp;Maria Chiara Mistretta ,&nbsp;Marta Balsamo","doi":"10.1016/j.polymertesting.2024.108627","DOIUrl":"10.1016/j.polymertesting.2024.108627","url":null,"abstract":"<div><div>Water pollution is one of the most pressing problems of our time; in fact, it contributes to 24 % of global deaths. Therefore, finding an effective and efficient solution is crucially important. In this regard, systems based on polymers and containing, often, fillers, intended for potential water pollutant removal are well established. Recently, simultaneously with the impressive spread of 3D printing, the production of these systems by various additive manufacturing processes is gaining popularity, enabling the rapid production of complex geometries, high porosity, large surface area and mechanical strength. These systems, to date, are becoming particularly competitive with 2D or 1D systems produced by other methods, so understanding them fully is essential. Therefore, here we provide a review of the most recent advances in the field of manufacturing 3D systems for water remediation. First, a brief introduction is proposed on the cathegory of 3D printing, making a distinction between Material Extrusion (MEX) and non-Material Extrusion (non-MEX) systems, and the main performance parameters of water pollutant removal. Next, the process parameters, composition, and morphological and chemical-physical properties of the latest 3D systems are discussed in detail. In the last part, an overview is given of the functional properties of these systems, in terms of removal efficiency and reusability, which is crucial in an ideal life cycle of such systems. In conclusion, the main outcomes and future perspectives for the production of more efficient systems are provided.</div></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"140 ","pages":"Article 108627"},"PeriodicalIF":5.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing thermal stability in natural ester oil-paper insulation systems via precision nanostructuring with parylene films: Experimental and molecular-level comprehensive assessment 通过对二甲苯薄膜的精密纳米结构提高天然酯油纸绝缘系统的热稳定性:实验和分子水平综合评估
IF 5 2区 材料科学
Polymer Testing Pub Date : 2024-11-01 DOI: 10.1016/j.polymertesting.2024.108592
Feipeng Wang , Jian Zhou , Linyang Dan , Yihua Qian , Shi Li , Issouf Fofana , Massimo Pompili , Jian Li
{"title":"Advancing thermal stability in natural ester oil-paper insulation systems via precision nanostructuring with parylene films: Experimental and molecular-level comprehensive assessment","authors":"Feipeng Wang ,&nbsp;Jian Zhou ,&nbsp;Linyang Dan ,&nbsp;Yihua Qian ,&nbsp;Shi Li ,&nbsp;Issouf Fofana ,&nbsp;Massimo Pompili ,&nbsp;Jian Li","doi":"10.1016/j.polymertesting.2024.108592","DOIUrl":"10.1016/j.polymertesting.2024.108592","url":null,"abstract":"<div><div>The oil-paper insulation system in eco-friendly fire-retardant transformers depends on hydrophilic natural ester insulating oil. Moisture within the system synergistically interacts with aging, worsening oil-paper insulation degradation and hastening overall system aging. Chemical vapor deposition was used to create parylene surface-modified insulating paper as a strategy to inhibit moisture-induced aging in natural ester oil-paper insulation. The effectiveness of the approach was identified by a comprehensive assessment of the physicochemical and electrical properties of the parylene surface-modified insulating paper. The findings from accelerated thermal aging at 130 °C for 90 days on the natural ester oil-paper insulation system reveal the outstanding lipophilic and hydrophobic properties while maintaining electrical characteristics of the parylene surface-modified insulating paper. After 90 days of aging, the parylene surface-modified insulating paper exhibited a 56.76 % higher degree of polymerization and a 19.36 % significantly lower moisture content than conventional cellulose insulating paper. In the natural ester oil-paper insulation system, the parylene surface-modified insulating paper led to a notable 63 % reduction in insulating oil acid value, a 60.50 % decrease in dielectric loss, and a substantial 20.35 % increase in AC breakdown voltage. Molecular-level investigations revealed the inhibitory mechanism of the parylene film, offering a promising solution to enhance the thermal stability and aging resistance of natural ester oil-paper insulation systems.</div></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"140 ","pages":"Article 108592"},"PeriodicalIF":5.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to “Intrinsic antibacterial photopolymerization 3D-printed thermosets from citronellol and cinnamyl alcohol: Synthesis and properties” [Polym. Test. 140 (2024) 108582] 香茅醇和肉桂醇的内在抗菌光聚合 3D 打印热固性塑料:合成与性能》[Polym. Test.
IF 5 2区 材料科学
Polymer Testing Pub Date : 2024-11-01 DOI: 10.1016/j.polymertesting.2024.108622
Yidong Wu , Dan Hong , Shijie Qi , Yi Fang , Yabin Zhu
{"title":"Corrigendum to “Intrinsic antibacterial photopolymerization 3D-printed thermosets from citronellol and cinnamyl alcohol: Synthesis and properties” [Polym. Test. 140 (2024) 108582]","authors":"Yidong Wu ,&nbsp;Dan Hong ,&nbsp;Shijie Qi ,&nbsp;Yi Fang ,&nbsp;Yabin Zhu","doi":"10.1016/j.polymertesting.2024.108622","DOIUrl":"10.1016/j.polymertesting.2024.108622","url":null,"abstract":"","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"140 ","pages":"Article 108622"},"PeriodicalIF":5.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustained release of heparin from PLLA micropartricles for tissue engineering applications 用于组织工程的聚乳酸微囊持续释放肝素
IF 5 2区 材料科学
Polymer Testing Pub Date : 2024-11-01 DOI: 10.1016/j.polymertesting.2024.108628
Mojdeh Rajabi , Iman Shabani , Seyed Hossein Ahmadi Tafti , Azadeh Shabani
{"title":"Sustained release of heparin from PLLA micropartricles for tissue engineering applications","authors":"Mojdeh Rajabi ,&nbsp;Iman Shabani ,&nbsp;Seyed Hossein Ahmadi Tafti ,&nbsp;Azadeh Shabani","doi":"10.1016/j.polymertesting.2024.108628","DOIUrl":"10.1016/j.polymertesting.2024.108628","url":null,"abstract":"<div><div>Heparin holds promise for cardiac tissue engineering, but challenges such as hematoma or bleeding and accumulation in tissue caused by excessive release, and short half-life persist. The present study aimed to introduce a reliable mechanism for the prolonged heparin release from a biocompatible polymer carrier. The designed system must ensure that heparin retains its bioactivity over time while preventing premature release. Heparin was encapsulated within poly (L-lactic acid) microparticles using the double emulsion method, with polyvinyl alcohol employed as the stabilizer. The encapsulation efficiency of heparin in the microparticles was calculated as 25.56 %. The functionality of the design was evaluated using Attenuated Total Reflection Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy, and Energy Dispersive X-ray Spectroscopy. Drug release and microparticle degradation studies were conducted alongside cell viability tests. The particle sizes ranged from 5 to 10 ± 2.53 μm, with evidence suggesting that heparin promotes the smaller particle formation. The system demonstrated a consistent drug release profile over six weeks with a release rate of 54 % by week two and 97.65 % by week six. The degradation of heparin-loaded microparticles reached less than 50 % by week six, and the loading of heparin did not significantly affect the degradation behavior of the PLLA microparticles in PBS. Furthermore, heparin concentrations between 200 and 400 μg/ml enhanced the viability of Placenta-derived Mesenchymal Stem Cells and H9c2. These findings suggest that the system could be considered as an effective vehicle for sustained heparin delivery across a spectrum of biological applications, particularly in cardiac tissue engineering.</div></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"140 ","pages":"Article 108628"},"PeriodicalIF":5.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of phosphorus-containing modifier based on phenolic epoxy resin and its application in flexible poly(vinyl chloride)/magnesium hydroxide composites 基于酚醛环氧树脂的含磷改性剂的合成及其在柔性聚氯乙烯/氢氧化镁复合材料中的应用
IF 5 2区 材料科学
Polymer Testing Pub Date : 2024-11-01 DOI: 10.1016/j.polymertesting.2024.108634
Xue Li , Yongkui Zheng , Xinyi Bao , Jia Liu , Wenhui Liu , Xiaoyuan Liu , Li Dang
{"title":"Synthesis of phosphorus-containing modifier based on phenolic epoxy resin and its application in flexible poly(vinyl chloride)/magnesium hydroxide composites","authors":"Xue Li ,&nbsp;Yongkui Zheng ,&nbsp;Xinyi Bao ,&nbsp;Jia Liu ,&nbsp;Wenhui Liu ,&nbsp;Xiaoyuan Liu ,&nbsp;Li Dang","doi":"10.1016/j.polymertesting.2024.108634","DOIUrl":"10.1016/j.polymertesting.2024.108634","url":null,"abstract":"<div><div>In this study, a phosphorus-containing and polyether structure modifier, phenolic epoxy phosphate ester (PEPE), was prepared by the reaction of phenolic epoxy resin (EPN) and phosphoric acid. It was used to solve the trade-off dilemma of simultaneously improving the mechanical properties and flame resistance of flexible poly (vinyl chloride) (fPVC)/magnesium hydroxide (MH) composites. The peak heat release rate, total heat release, peak smoke production rate, and total smoke production of the fPVC/MHPEPE-5 (PEPE modified MH as filler) composite were decreased by 35.31 %, 49.2 %, 40.42 %, and 27.26 %, respectively, in comparison with the fPVC/MH composite. More importantly, the fPVC/MHPEPE-5 composite passed V-0 rating in the UL-94 test, while the fPVC and fPVC/MH composite passed V-2 and V-1 rating. The presence of phosphorus compounds in the condensed phase promoted the formation of a dense char residue of the fPVC/MHPEPE-5 composite. Therefore, the heat and flammable volatiles cannot migrate between the substrate zone and the combustion zone. In the gas phase, the dilution effect of H<sub>2</sub>O reduced the concentration of oxygen and combustible volatiles. The radicals quenching effect of the primary and secondary pyrolysis products of PEPE (such as PO· and PO<sub>2</sub>·) with ·H and ·OH<sup>.</sup> radicals played a crucial role in flame extinguishing and combustion termination. In addition, the scanning electron microscopy results showed that MHPEPE performed good compatibility with the fPVC matrix. The tensile and impact strength of the fPVC/MHPEPE-5 composite was 12.19 % and 19.26 % higher than that of the fPVC/MH composite, respectively.</div></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"140 ","pages":"Article 108634"},"PeriodicalIF":5.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of titanate coupling agent on antioxidant property and UV blocking property of PBAT/lignin composite films 钛酸酯偶联剂对 PBAT/木质素复合薄膜抗氧化性和紫外线阻隔性的影响
IF 5 2区 材料科学
Polymer Testing Pub Date : 2024-11-01 DOI: 10.1016/j.polymertesting.2024.108613
Honghuan Li , Jianping Ding , Yelzati Aytibeke , Liupeizhi Yuan , Yitong Jiang , Mamatjan Yimit
{"title":"Effect of titanate coupling agent on antioxidant property and UV blocking property of PBAT/lignin composite films","authors":"Honghuan Li ,&nbsp;Jianping Ding ,&nbsp;Yelzati Aytibeke ,&nbsp;Liupeizhi Yuan ,&nbsp;Yitong Jiang ,&nbsp;Mamatjan Yimit","doi":"10.1016/j.polymertesting.2024.108613","DOIUrl":"10.1016/j.polymertesting.2024.108613","url":null,"abstract":"<div><div>PBAT is the largest amount of biomass-degradable plastics on the market at present, and its application in related fields is limited due to its defects such as poor weather resistance. In this study, the surface modification of lignin by titanate coupling agent was realized by the melt extrusion reaction method of non-catalytic system, and the PBAT/cotton straw lignin composite film was prepared by melt blending and blow molding with PBAT at a certain ratio. The structure and properties of the specimens were analyzed before and after the artificial accelerated aging test using characterization means such as DSC, SEM, IR, transmittance and mechanical properties. The results showed that the tensile strength and elongation at break ratios of the composite film increased by 36.99 % and 34.31 %, respectively, compared with the pure PBAT film when the titanate coupling agent modified lignin was 10 %; the retained value of elongation at break of the specimen on the sixth day of thermo-oxidative light aging increased by 13.33 %; and the UV transmittance at 500 nm was reduced by 96.95 %; And through the comprehensive evaluation system of material stability, the temperature aging kinetic model was established and a temperature sensitivity analysis was performed, and it was found that the specimen with 10 % lignin content had a significant reduction in temperature sensitivity. The composite film developed in this study maintains the fully biodegradable properties of PBAT while introducing the characteristics of functional modifiers, which provides a new idea to broaden the application in the field of packaging and helps to reduce the production cost.</div></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"140 ","pages":"Article 108613"},"PeriodicalIF":5.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信