{"title":"Habituation of mating preferences: a comment on Daniel, Koffinas and Hughes (2019)","authors":"C. Chiandetti, M. Turatto","doi":"10.1098/rspb.2019.1373","DOIUrl":"https://doi.org/10.1098/rspb.2019.1373","url":null,"abstract":"","PeriodicalId":20609,"journal":{"name":"Proceedings of the Royal Society B","volume":"64 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80973405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anita Narwani, M. Reyes, A. Pereira, Hannele Penson, Stuart R. Dennis, Sam Derrer, P. Spaak, B. Matthews
{"title":"Interactive effects of foundation species on ecosystem functioning and stability in response to disturbance","authors":"Anita Narwani, M. Reyes, A. Pereira, Hannele Penson, Stuart R. Dennis, Sam Derrer, P. Spaak, B. Matthews","doi":"10.1098/rspb.2019.1857","DOIUrl":"https://doi.org/10.1098/rspb.2019.1857","url":null,"abstract":"A major challenge in ecology is to understand determinants of ecosystem functioning and stability in the face of disturbance. Some important species can strongly shape community structure and ecosystem functioning, but their impacts and interactions on ecosystem-level responses to disturbance are less well known. Shallow ponds provide a model system in which to study the effects of such species because some taxa mitigate transitions between alternative ecosystem states caused by eutrophication. We performed pond experiments to test how two foundation species (a macrophyte and a mussel) affected the biomass of planktonic primary producers and its stability in response to nutrient additions. Individually, each species reduced phytoplankton biomass and tended to increase rates of recovery from disturbance, but together the species reversed these effects, particularly with larger nutrient additions. This reversal was mediated by high cyanobacterial dominance of the community and a resulting loss of trait evenness. Effects of the foundation species on primary producer biomass were associated with effects on other ecosystem properties, including turbidity and dissolved oxygen. Our work highlights the important role of foundation species and their interactive effects in determining responses of ecosystem functioning to disturbance.","PeriodicalId":20609,"journal":{"name":"Proceedings of the Royal Society B","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87569091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Grant C. McDonald, Lewis G. Spurgin, Eleanor A. Fairfield, D. Richardson, T. Pizzari
{"title":"Differential female sociality is linked with the fine-scale structure of sexual interactions in replicate groups of red junglefowl, Gallus gallus","authors":"Grant C. McDonald, Lewis G. Spurgin, Eleanor A. Fairfield, D. Richardson, T. Pizzari","doi":"10.1098/rspb.2019.1734","DOIUrl":"https://doi.org/10.1098/rspb.2019.1734","url":null,"abstract":"Recent work indicates that social structure has extensive implications for patterns of sexual selection and sexual conflict. However, little is known about the individual variation in social behaviours linking social structure to sexual interactions. Here, we use network analysis of replicate polygynandrous groups of red junglefowl (Gallus gallus) to show that the association between social structure and sexual interactions is underpinned by differential female sociality. Sexual dynamics are largely explained by a core group of highly social, younger females, which are more fecund and more polyandrous, and thus associated with more intense postcopulatory competition for males. By contrast, less fecund females from older cohorts, which tend to be socially dominant, avoid male sexual attention by clustering together and perching on branches, and preferentially reproduce with dominant males by more exclusively associating and mating with them. Collectively, these results indicate that individual females occupy subtly different social niches and demonstrate that female sociality can be an important factor underpinning the landscape of intrasexual competition and the emergent structure of animal societies.","PeriodicalId":20609,"journal":{"name":"Proceedings of the Royal Society B","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75786352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Lehnert, S. Lehnert, K. Christensen, K. Christensen, W. Vandersteen, D. Sakhrani, T. Pitcher, J. Heath, B. Koop, D. Heath, R. Devlin
{"title":"Carotenoid pigmentation in salmon: variation in expression at BCO2-l locus controls a key fitness trait affecting red coloration","authors":"S. Lehnert, S. Lehnert, K. Christensen, K. Christensen, W. Vandersteen, D. Sakhrani, T. Pitcher, J. Heath, B. Koop, D. Heath, R. Devlin","doi":"10.1098/rspb.2019.1588","DOIUrl":"https://doi.org/10.1098/rspb.2019.1588","url":null,"abstract":"Carotenoids are primarily responsible for the characteristic red flesh coloration of salmon. Flesh coloration is an economically and evolutionarily significant trait that varies inter- and intra-specifically, yet the underlying genetic mechanism is unknown. Chinook salmon (Oncorhynchus tshawytscha) represents an ideal system to study carotenoid variation as, unlike other salmonids, they exhibit extreme differences in carotenoid utilization due to genetic polymorphisms. Here, we crossed populations of Chinook salmon with fixed differences in flesh coloration (red versus white) for a genome-wide association study to identify loci associated with pigmentation. Here, the beta-carotene oxygenase 2-like (BCO2-l) gene was significantly associated with flesh colour, with the most significant single nucleotide polymorphism explaining 66% of the variation in colour. BCO2 gene disruption is linked to carotenoid accumulation in other taxa, therefore we hypothesize that an ancestral mutation partially disrupting BCO2-l activity (i.e. hypomorphic mutation) allowed the deposition and accumulation of carotenoids within Salmonidae. Indeed, we found elevated transcript levels of BCO2-l in white Chinook salmon relative to red. The long-standing mystery of why salmon are red, while no other fishes are, is thus probably explained by a hypomorphic mutation in the proto-salmonid at the time of divergence of red-fleshed salmonid genera (approx. 30 Ma).","PeriodicalId":20609,"journal":{"name":"Proceedings of the Royal Society B","volume":"43 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88263317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Habituation of mating preferences: a response to Chiandetti and Turatto","authors":"M. J. Daniel, L. Koffinas, Kimberly A. Hughes","doi":"10.1098/rspb.2019.2103","DOIUrl":"https://doi.org/10.1098/rspb.2019.2103","url":null,"abstract":"","PeriodicalId":20609,"journal":{"name":"Proceedings of the Royal Society B","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81435439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evolutionary simulations of Z-linked suppression gene drives","authors":"L. Holman","doi":"10.1098/rspb.2019.1070","DOIUrl":"https://doi.org/10.1098/rspb.2019.1070","url":null,"abstract":"Synthetic gene drives may soon be used to suppress or eliminate populations of disease vectors, pathogens, invasive species, and agricultural pests. Recent proposals have focused on using Z-linked gene drives to control species with ZW sex determination, which include Lepidopteran pests, parasitic trematodes, and cane toads. These proposals include Z-linked ‘W-shredders’, which would suppress populations by cleaving the W chromosome and causing females to produce only sons, as well as Z-linked female-sterilizing gene drives. Here, I use eco-evolutionary simulations to evaluate the potential of some proposed Z-linked gene drives, and to produce recommendations regarding their design and use. The simulations show that W-shredders are likely to be highly effective at eradicating populations provided that resistance to W-shredding cannot evolve. However, W-shredder alleles can invade populations from very low frequencies, making it difficult to eliminate specific populations while leaving nearby populations untouched; this issue may restrict their possible uses.","PeriodicalId":20609,"journal":{"name":"Proceedings of the Royal Society B","volume":"19 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84530699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Hyman, T. Frazer, C. Jacoby, Jessica R. Frost, M. Kowalewski
{"title":"Long-term persistence of structured habitats: seagrass meadows as enduring hotspots of biodiversity and faunal stability","authors":"A. Hyman, T. Frazer, C. Jacoby, Jessica R. Frost, M. Kowalewski","doi":"10.1098/rspb.2019.1861","DOIUrl":"https://doi.org/10.1098/rspb.2019.1861","url":null,"abstract":"Ecological studies indicate that structurally complex habitats support elevated biodiversity, stability and resilience. The long-term persistence of structured habitats and their importance in maintaining biodiverse hotspots remain underexplored. We combined geohistorical data (dead mollusc assemblages, ‘DA’) and contemporary surveys (live mollusc assemblages, ‘LA’) to assess the persistence of local seagrass habitats over multi-centennial timescales and to evaluate whether they acted as long-term drivers of biodiversity, stability and resilience of associated fauna. We sampled structured seagrass meadows and open sandy bottoms along Florida's Gulf Coast. Results indicated that: (i) LA composition differed significantly between the two habitat types, (ii) LA from seagrass sites were characterized by significantly elevated local biodiversity and significantly higher spatial stability, (iii) DA composition differed significantly between the two habitat types, and (iv) fidelity between LA and DA was significantly greater for seagrass habitats. Contemporary results support the hypotheses that local biodiversity and spatial stability of marine benthos are both elevated in structured seagrass habitats. Geohistorical results suggest that structured habitats persist as local hotspots of elevated biodiversity and faunal stability over centennial-to-millennial timescales; indicating that habitat degradation and concomitant loss within structurally complex marine systems is a key driver of declining biodiversity and resilience.","PeriodicalId":20609,"journal":{"name":"Proceedings of the Royal Society B","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87785348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. Rapacciuolo, G. Rapacciuolo, J. Beman, L. M. Schiebelhut, M. Dawson
{"title":"Microbes and macro-invertebrates show parallel β-diversity but contrasting α-diversity patterns in a marine natural experiment","authors":"G. Rapacciuolo, G. Rapacciuolo, J. Beman, L. M. Schiebelhut, M. Dawson","doi":"10.1098/rspb.2019.0999","DOIUrl":"https://doi.org/10.1098/rspb.2019.0999","url":null,"abstract":"Documenting ecological patterns across spatially, temporally and taxonomically diverse ecological communities is necessary for a general understanding of the processes shaping biodiversity. A major gap in our understanding remains the comparison of diversity patterns across a broad spectrum of evolutionarily and functionally diverse organisms, particularly in the marine realm. Here, we aim to narrow this gap by comparing the diversity patterns of free-living microbes and macro-invertebrates across a natural experiment provided by the marine lakes of Palau: geographically discrete and environmentally heterogeneous bodies of seawater with comparable geological and climatic history, and a similar regional species pool. We find contrasting patterns of α-diversity but remarkably similar patterns of β-diversity between microbial and macro-invertebrate communities among lakes. Pairwise dissimilarities in community composition among lakes are positively correlated between microbes and macro-invertebrates, and influenced to a similar degree by marked gradients in oxygen concentration and salinity. Our findings indicate that a shared spatio-temporal and environmental context may result in parallel patterns of β-diversity in microbes and macro-invertebrates, in spite of key trait differences between these organisms. This raises the possibility that parallel processes also influence transitions among regional biota across the tree of life, at least in the marine realm.","PeriodicalId":20609,"journal":{"name":"Proceedings of the Royal Society B","volume":"110 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87710308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ada J. Klinkhamer, N. Woodley, J. M. Neenan, W. Parr, P. Clausen, M. Sánchez-Villagra, G. Sansalone, A. Lister, S. Wroe
{"title":"Head to head: the case for fighting behaviour in Megaloceros giganteus using finite-element analysis","authors":"Ada J. Klinkhamer, N. Woodley, J. M. Neenan, W. Parr, P. Clausen, M. Sánchez-Villagra, G. Sansalone, A. Lister, S. Wroe","doi":"10.1098/rspb.2019.1873","DOIUrl":"https://doi.org/10.1098/rspb.2019.1873","url":null,"abstract":"The largest antlers of any known deer species belonged to the extinct giant deer Megaloceros giganteus. It has been argued that their antlers were too large for use in fighting, instead being used only in ritualized displays to attract mates. Here, we used finite-element analysis to test whether the antlers of M. giganteus could have withstood forces generated during fighting. We compared the mechanical performance of antlers in M. giganteus with three extant deer species: red deer (Cervus elaphus), fallow deer (Dama dama) and elk (Alces alces). Von Mises stress results suggest that M. giganteus was capable of withstanding some fighting loads, provided that their antlers interlocked proximally, and that their antlers were best adapted for withstanding loads from twisting rather than pushing actions, as are other deer with palmate antlers. We conclude that fighting in M. giganteus was probably more constrained and predictable than in extant deer.","PeriodicalId":20609,"journal":{"name":"Proceedings of the Royal Society B","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85662733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ming Liu, D. Rubenstein, Wei-Chung Liu, Sheng-Feng Shen
{"title":"A continuum of biological adaptations to environmental fluctuation","authors":"Ming Liu, D. Rubenstein, Wei-Chung Liu, Sheng-Feng Shen","doi":"10.1098/rspb.2019.1623","DOIUrl":"https://doi.org/10.1098/rspb.2019.1623","url":null,"abstract":"Bet-hedging—a strategy that reduces fitness variance at the expense of lower mean fitness among different generations—is thought to evolve as a biological adaptation to environmental unpredictability. Despite widespread use of the bet-hedging concept, most theoretical treatments have largely made unrealistic demographic assumptions, such as non-overlapping generations and fixed or infinite population sizes. Here, we extend the concept to consider overlapping generations by defining bet-hedging as a strategy with lower variance and mean per capita growth rate across different environments. We also define an opposing strategy—the rising-tide—that has higher mean but also higher variance in per capita growth. These alternative strategies lie along a continuum of biological adaptions to environmental fluctuation. Using stochastic Lotka–Volterra models to explore the evolution of the rising-tide versus bet-hedging strategies, we show that both the mean environmental conditions and the temporal scales of their fluctuations, as well as whether population dynamics are discrete or continuous, are crucial in shaping the type of strategy that evolves in fluctuating environments. Our model demonstrates that there are likely to be a wide range of ways that organisms with overlapping generations respond to environmental unpredictability beyond the classic bet-hedging concept.","PeriodicalId":20609,"journal":{"name":"Proceedings of the Royal Society B","volume":"169 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77525651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}