Carotenoid pigmentation in salmon: variation in expression at BCO2-l locus controls a key fitness trait affecting red coloration

S. Lehnert, S. Lehnert, K. Christensen, K. Christensen, W. Vandersteen, D. Sakhrani, T. Pitcher, J. Heath, B. Koop, D. Heath, R. Devlin
{"title":"Carotenoid pigmentation in salmon: variation in expression at BCO2-l locus controls a key fitness trait affecting red coloration","authors":"S. Lehnert, S. Lehnert, K. Christensen, K. Christensen, W. Vandersteen, D. Sakhrani, T. Pitcher, J. Heath, B. Koop, D. Heath, R. Devlin","doi":"10.1098/rspb.2019.1588","DOIUrl":null,"url":null,"abstract":"Carotenoids are primarily responsible for the characteristic red flesh coloration of salmon. Flesh coloration is an economically and evolutionarily significant trait that varies inter- and intra-specifically, yet the underlying genetic mechanism is unknown. Chinook salmon (Oncorhynchus tshawytscha) represents an ideal system to study carotenoid variation as, unlike other salmonids, they exhibit extreme differences in carotenoid utilization due to genetic polymorphisms. Here, we crossed populations of Chinook salmon with fixed differences in flesh coloration (red versus white) for a genome-wide association study to identify loci associated with pigmentation. Here, the beta-carotene oxygenase 2-like (BCO2-l) gene was significantly associated with flesh colour, with the most significant single nucleotide polymorphism explaining 66% of the variation in colour. BCO2 gene disruption is linked to carotenoid accumulation in other taxa, therefore we hypothesize that an ancestral mutation partially disrupting BCO2-l activity (i.e. hypomorphic mutation) allowed the deposition and accumulation of carotenoids within Salmonidae. Indeed, we found elevated transcript levels of BCO2-l in white Chinook salmon relative to red. The long-standing mystery of why salmon are red, while no other fishes are, is thus probably explained by a hypomorphic mutation in the proto-salmonid at the time of divergence of red-fleshed salmonid genera (approx. 30 Ma).","PeriodicalId":20609,"journal":{"name":"Proceedings of the Royal Society B","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspb.2019.1588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

Carotenoids are primarily responsible for the characteristic red flesh coloration of salmon. Flesh coloration is an economically and evolutionarily significant trait that varies inter- and intra-specifically, yet the underlying genetic mechanism is unknown. Chinook salmon (Oncorhynchus tshawytscha) represents an ideal system to study carotenoid variation as, unlike other salmonids, they exhibit extreme differences in carotenoid utilization due to genetic polymorphisms. Here, we crossed populations of Chinook salmon with fixed differences in flesh coloration (red versus white) for a genome-wide association study to identify loci associated with pigmentation. Here, the beta-carotene oxygenase 2-like (BCO2-l) gene was significantly associated with flesh colour, with the most significant single nucleotide polymorphism explaining 66% of the variation in colour. BCO2 gene disruption is linked to carotenoid accumulation in other taxa, therefore we hypothesize that an ancestral mutation partially disrupting BCO2-l activity (i.e. hypomorphic mutation) allowed the deposition and accumulation of carotenoids within Salmonidae. Indeed, we found elevated transcript levels of BCO2-l in white Chinook salmon relative to red. The long-standing mystery of why salmon are red, while no other fishes are, is thus probably explained by a hypomorphic mutation in the proto-salmonid at the time of divergence of red-fleshed salmonid genera (approx. 30 Ma).
三文鱼的类胡萝卜素色素沉着:bco2 - 1基因座的表达变化控制着影响红色的关键适应度性状
类胡萝卜素是三文鱼特有的红色果肉颜色的主要原因。肉色是一种经济上和进化上重要的性状,它在种间和种内都有变化,但其潜在的遗传机制尚不清楚。奇努克鲑鱼(Oncorhynchus tshawytscha)是研究类胡萝卜素变异的理想系统,因为与其他鲑鱼不同,它们由于遗传多态性而在类胡萝卜素利用方面表现出极大的差异。在这里,我们杂交了肉色(红色和白色)有固定差异的奇努克鲑鱼种群,进行全基因组关联研究,以确定与色素沉着相关的位点。在这里,β -胡萝卜素加氧酶2样(BCO2-l)基因与果肉颜色显著相关,最显著的单核苷酸多态性解释了66%的颜色变化。BCO2基因破坏与其他类群中的类胡萝卜素积累有关,因此我们假设祖先突变部分破坏BCO2- 1活性(即次形突变)允许类胡萝卜素在鲑鱼科中的沉积和积累。事实上,我们发现白色奇努克鲑鱼的bco2 - 1转录水平比红色的高。为什么鲑鱼是红色的,而其他鱼类却不是,这个长期存在的谜团可能是在红肉鲑属分化时,原始鲑属发生了次胚突变。30 Ma)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信