Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering最新文献

筛选
英文 中文
Experimental study on the friction and wear of the scraper and groove side friction pair under variable factors 可变因素下刮刀和槽边摩擦副的摩擦和磨损实验研究
IF 2.4 4区 工程技术
Rui Xia, Bei Liu, Bo Li, Xuewen Wang
{"title":"Experimental study on the friction and wear of the scraper and groove side friction pair under variable factors","authors":"Rui Xia, Bei Liu, Bo Li, Xuewen Wang","doi":"10.1177/09544089241272774","DOIUrl":"https://doi.org/10.1177/09544089241272774","url":null,"abstract":"To investigate the wear characteristics and mechanisms of the scraper and groove side friction pair under various factors, this study utilizes the scraper conveyor SGZ1000/2 × 1200 as the prototype and designs a test bench with a similarity ratio of 1:6. The Plackett–Burman experiment is used to examine the significant effects of five key factors (running speed, normal load, particle size, gangue content, and groove side clearance) on the groove side wear. It reveals that gangue content exerts the most significant impact, while the normal load is relatively minor. The interaction between factors is studied through the Box–Behnken experimental design. By analyzing the interaction through the obtained second-order regression model, it can be concluded that the interaction between running speed and groove side clearance, as well as the interaction between running speed and particle size, exacerbates groove side wear. The significant factors are validated through single-factor experiments. To further analyze the variations in wear under each factor, the changes from the second to the fourth level of each single factor are selected and compared with other factors. The running speed increasing from 0.06 m/s to 0.12 m/s results in a 102.67% wear amount increase. A 95.21% increase occurs when the particle size increases from 1.5 mm to 2.5 mm. Gangue content exhibits the most significant impact, where the content increases from 8% to 25%, marking a 205.73% rise. The wear morphology shifts from shallow pits and furrows to deeper ones, accompanied by a noticeable increase in quantity. Conversely, the wear amount and morphology changes least in groove side clearance, when the groove side clearance increases from 0 mm to +1 mm, a decline of 63.47%. The morphology shifts from numerous deep pits and furrows to shallower and smaller ones, indicating the mildest abrasive wear phenomenon.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Irreversibility analysis on a radiative hybrid nanofluid flow across an exponentially stretching sheet with multiple slips and variable thermal conductivity 具有多重滑移和可变导热性的指数拉伸薄片上辐射混合纳米流体流动的不可逆性分析
IF 2.4 4区 工程技术
Rajesh Chary Kandukoori, Pranitha Janapatla, Anomitra Chakraborty
{"title":"Irreversibility analysis on a radiative hybrid nanofluid flow across an exponentially stretching sheet with multiple slips and variable thermal conductivity","authors":"Rajesh Chary Kandukoori, Pranitha Janapatla, Anomitra Chakraborty","doi":"10.1177/09544089241276350","DOIUrl":"https://doi.org/10.1177/09544089241276350","url":null,"abstract":"The entropy analysis and flow behavior of a mixed convective hybrid nanofluid [Formula: see text] across an exponentially stretching sheet were examined in this article using Tiwari-Das model in presence of thermal radiation, Joule heating, viscous dissipation, velocity slip, and thermal slip at the boundary with the idea of variable thermal conductivity which was yet to be studied by any researcher. This attests to the novelty of our study. The non-linear partial differential equations have been transformed into non-dimensional ordinary differential equations using similarity transformations, and the MATLAB bvp4c algorithm is used to solve it numerically. Comparisons were made with previously published studies which were found to be in great agreement. The temperature profile increases with increasing Eckert number [Formula: see text], variable thermal conductivity parameter [Formula: see text], buoyancy parameter [Formula: see text], volume fraction of nanoparticle parameter [Formula: see text], and radiation parameter [Formula: see text]. However, the opposite trend is observed when suction parameter [Formula: see text] is increased. It was observed that the fluid motion decreases as velocity slip [Formula: see text] increases and thermal slip [Formula: see text] behaves in the same manner on temperature profile. It is observed that, for differing values of Eckert number and radiation parameter, the skin friction coefficient leads to increase while the Nusselt number values decrease. An increased by 9.39% is observed for entropy production [Formula: see text] for a change in Brinkmann number [Formula: see text] from 0.5 to 2.0 while entropy production profile reduced by [Formula: see text] for changing the variable thermal conductivity parameter from [Formula: see text] to 1.5. Similarly, an increased by [Formula: see text] is observed for temperature profile for a change in radiation parameter from Rd = 0.10 to 1.50. The current study discovered use for it in glass fiber production, wire drawing stretching, aerodynamic plastic sheet extrusion, metallic plate cooling, etc.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermally radiative chemically reactive flow of Reiner-Rivlin nanofluid through porous medium with Newtonian conditions 雷纳-里夫林纳米流体在牛顿条件下通过多孔介质的热辐射化学反应流动
IF 2.4 4区 工程技术
Sana Nasir, Sabir Ali Shehzad, Tabinda Khattab
{"title":"Thermally radiative chemically reactive flow of Reiner-Rivlin nanofluid through porous medium with Newtonian conditions","authors":"Sana Nasir, Sabir Ali Shehzad, Tabinda Khattab","doi":"10.1177/09544089241274045","DOIUrl":"https://doi.org/10.1177/09544089241274045","url":null,"abstract":"The nanofluids have well-known implications in pharmaceutical industries, microelectronics, heat exchangers, engine cooling, hybrid-powered engines, thermal management of vehicles, refrigerator, machining, chillers, grinding, and in boiler fuel to reduce the gas temperature. Due to such dominant implications of nanofluids, the boundary layer Reiner-Rivlin nanomaterial flow over chemically reactive stretched sheet is considered. Radiation term is incorporated in the energy equation for heat transportation analysis. Newtonian thermal and solutal conditions are implemented at the boundaries of the surface. Similarity variables are utilized for the conversion of nonlinear partial differential equations into the system of one independent variable equations. The resulted system of equations is calculated analytically with the help of homotopy analysis method. Convergence of the calculated results is verified through plots and numeric benchmark. The results of various pertinent parameters on quantities of physical importance are drawn and discussed in detail. Results revealed that the incremented cross viscous constraint resulted higher velocity and lower temperature profiles. An augmentation in radiative constraint gives rise to temperature field. Concentration and temperature have reverse trends against the rising Brownian motion constraint values.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The efficiency of solar stills with copper-coated sponge cubes for water desalination: A comparative study 带铜涂层海绵块的太阳能蒸馏器的海水淡化效率:比较研究
IF 2.4 4区 工程技术
VS Winstor Jebakumar, V Rajkumar, S Vijayan, A Veerakumar
{"title":"The efficiency of solar stills with copper-coated sponge cubes for water desalination: A comparative study","authors":"VS Winstor Jebakumar, V Rajkumar, S Vijayan, A Veerakumar","doi":"10.1177/09544089241276353","DOIUrl":"https://doi.org/10.1177/09544089241276353","url":null,"abstract":"Water scarcity within the world may be an enormous threat to living beings. Potable water can be produced by renewable energy using solar desalination. In the quest for efficient water desalination methods, researchers have turned to solar stills as a promising solution. One approach to enhancing the productivity of solar stills is the utilization of copper-coated sponge cubes. These cubes, when integrated into the still, provide extended heating periods, leading to higher temperature differences. This, in turn, improves freshwater production by improving the performance of the modified still. In this work, three basin-type solar stills of each 0.5 m<jats:sup>2</jats:sup> area have been studied experimentally in the location of Coimbatore, Tamil Nadu. Comparative studies were done between the solar still modified with sponge materials and the modified solar still with sponges coated with copper powder. In these experimental studies, the various performance characteristics related to solar still efficiency have been examined. The sponges were placed inside the water of the basin. The commercially available copper powder was prepared like a paste and coated in the sponges, and it was increased in size to 0.005 m on all sides. The sponges pasted with copper powder reduce the energy losses from the still due to its high thermal conductivity and the evaporation rate also increased by the capillary action of the sponge. High heat transfer to water also occurred due to the addition of copper powder. From the comparative studies, the solar still with sponge materials coated with copper powder gives a higher yield. The proposed solar still with modifications improves efficiency. The solar still without modification gives a yield of 1.3 kg/day, the modified still with sponges gives an output of 1.5 kg/day and the modified still with copper-coated sponges gives an output of 2.35 kg/day. The copper-coated sponge cubes placed still produced an efficiency of 60.07%.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental study on grinding process of Al-Mg2Si aluminum matrix composites 铝-Mg2Si 铝基复合材料研磨工艺的实验研究
IF 2.4 4区 工程技术
Hailong Sun, Qi Gao, Quanzhao Wang, Bintong Zhao, Dake Yun
{"title":"Experimental study on grinding process of Al-Mg2Si aluminum matrix composites","authors":"Hailong Sun, Qi Gao, Quanzhao Wang, Bintong Zhao, Dake Yun","doi":"10.1177/09544089241272755","DOIUrl":"https://doi.org/10.1177/09544089241272755","url":null,"abstract":"As an aluminum-based reinforcement, Mg<jats:sub>2</jats:sub>Si particles have excellent properties such as high hardness, high melting point, and high elastic modulus compared with other reinforcements and are widely used in aerospace and automobile fields. However, there is little research on the cutting mechanism of this material. In order to explore the surface grinding mechanism of Mg<jats:sub>2</jats:sub>Si/Al composites, Grinding simulation of low-volume fraction Mg<jats:sub>2</jats:sub>Si/Al composites was carried out by ABAQUS, and the influence of different positions of matrix and particle removal on the surface quality of Mg<jats:sub>2</jats:sub>Si/Al composites was expounded. The plane reverse grinding test was carried out by using CBN (boron nitride) grinding wheel. The L<jats:sub>16</jats:sub>(4<jats:sup>3</jats:sup>) orthogonal test and three groups of single factor tests were designed. The orthogonal results show that the linear velocity of the grinding wheel has the greatest influence on the surface roughness, and the feed rate and grinding depth are significantly smaller. The range analysis shows that the optimal grinding parameters are: v<jats:sub>s </jats:sub>= 35 m/s, v<jats:sub>w </jats:sub>= 0.75 m/min, a<jats:sub>p </jats:sub>= 0.015 mm. The regression equation for surface roughness was established by using MATLAB. The single factor results show that the surface quality is obviously improved by increasing the linear velocity of the grinding wheel and reducing the feed rate and grinding depth through the observation of the morphology of the processed specimen. The analysis results show that defects such as pits, protrusions, burrs, and a small amount of fish-scale-like on the machined surface are mainly caused by the linear velocity of the grinding wheel, the pulling force of the grinding wheel, and the adhesion of the debris. The defects such as particle micro-cracks, particle pull-out, and matrix cracking on the subsurface, are mainly caused by the compressive stress of the grinding wheel and the stress concentration of the particles. The research results have guiding significance for future composite material cutting research and actual cutting processing.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of gas metal arc welding parameters for dissimilar steel welds: A case study on duplex stainless steel 2205 and stainless steel 316L 优化异种钢焊接的气体金属弧焊参数:双相不锈钢 2205 和不锈钢 316L 案例研究
IF 2.4 4区 工程技术
Veerakumar Sengottaiyan, Krishnamurthy Kasilingam, Meenakshipriya Balasubramaniam, Arunkumar Munimathan
{"title":"Optimization of gas metal arc welding parameters for dissimilar steel welds: A case study on duplex stainless steel 2205 and stainless steel 316L","authors":"Veerakumar Sengottaiyan, Krishnamurthy Kasilingam, Meenakshipriya Balasubramaniam, Arunkumar Munimathan","doi":"10.1177/09544089241272807","DOIUrl":"https://doi.org/10.1177/09544089241272807","url":null,"abstract":"The significance of welded connections in steel structures necessitates precise structural designs and processing adaptations to ensure robust mechanical strength and durability. Gas metal arc welding (GMAW) employing controlled curves presents advantages over conventional methods, offering enhanced weld bead properties, improved aesthetics, and reduced thermal inputs. This research investigates the impact of GMAW parameters using controlled curves on the microstructure and geometry of welds between dissimilar structural steels—duplex stainless steel 2205 and stainless steel 316L grade 50—commonly employed in construction. The aim is to optimize the GMAW welding process with controlled curves and surface tension transfer between these dissimilar steels. Through a 2<jats:sup>3</jats:sup>-factorial experimental design encompassing feed speed (Va), arc focus (FC), and peak-to-base amplitude (APB), the study examines welding energy, geometry, deposition efficiency, microstructure, microhardness, tensile strength, and corrosion properties. Optimal welding energy fosters refined microstructures and uniform hardness, aiding in predicting weld throat area. Higher energy levels expand the heat-affected zone and coarse grains, while lower energies escalate variability. Predictive models facilitate fine-tuning welding energy and throat area for desirable properties and penetration while minimizing disruptions. This process optimization can be achieved by employing derived equations that limit welding energy and curve parameters, striking a desired balance between cost, structural integrity, and reliability.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustainable engineering applications using jute-basalt fiber reinforced composites: A material characterization study 使用黄麻-沥青纤维增强复合材料的可持续工程应用:材料特性研究
IF 2.4 4区 工程技术
G Suganya Priyadharshini, M Vijayan, Indran Suyambulingam, Suchart Siengchin, A Eakambaram
{"title":"Sustainable engineering applications using jute-basalt fiber reinforced composites: A material characterization study","authors":"G Suganya Priyadharshini, M Vijayan, Indran Suyambulingam, Suchart Siengchin, A Eakambaram","doi":"10.1177/09544089241276329","DOIUrl":"https://doi.org/10.1177/09544089241276329","url":null,"abstract":"The increasing demand for sustainable and eco-friendly materials in engineering and construction industries has led to extensive research in the development of alternative fibers for composite materials. This study explores the potential of combining jute and basalt fibers to create a novel composite material with enhanced mechanical and environmental properties. The present investigation focused on developing a Jute/basalt hybrid composite by adding a Zirconium carbide filler using compression molding technique. The filler percentage was varied as 0 wt.%, 0.5 wt.%, 1 wt.%, 1.5 wt.% and 2 wt.% in an epoxy resin matrix. Mechanical tests were performed to determine the tensile strength, flexural strength, and impact resistance of the composite materials. The composites’ microstructure was studied using FESEM to understand fiber-matrix interactions. Preliminary results indicate that the combination of jute and basalt fibers in composite materials can yield a balance between strength and sustainability. The present work indicates promising developments in composite materials, with 1.5 wt.% demonstrating a significant 37.7% increase in tensile strength when compared to pure jute/basalt composite. In terms of flexural strength, the addition of 1.5 wt.% nanofiller resulted in a remarkable 112.4% enhancement in flexural strength compared to the absence of ZrC laminate. In addition, the presence of ZrC significantly enhances the impact strength. Specifically, the addition of 1 wt.% and 1.5 wt.% results in increased strengths of 98.2 J/m and 99.2 J/m, respectively.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental and numerical investigations of aerospace alloys: Effect of machining 航空航天合金的实验和数值研究:机加工的影响
IF 2.4 4区 工程技术
Pujari Chinna Peddaiah, Srihari Dodla
{"title":"Experimental and numerical investigations of aerospace alloys: Effect of machining","authors":"Pujari Chinna Peddaiah, Srihari Dodla","doi":"10.1177/09544089241278080","DOIUrl":"https://doi.org/10.1177/09544089241278080","url":null,"abstract":"Aerospace materials like Ti6Al4V and Inconel 718 have exceptional abilities such as high strength, good corrosion resistance, and low specific weight. These properties make them difficult to machine due to rapid tool wear, high cutting forces, and heat generation. Microstructural characterization has been performed for these alloys to identify the phases and precipitates. With the help of machining simulations, experimental trial and error can be avoided. Numerical simulations predict the behavior of materials like Ti6Al4V and Inconel 718 under various machining conditions. They provide insights into stress distribution, temperature rise, and chip formation, which are crucial for understanding how these materials respond to machining. By simulating different cutting parameters (e.g. speed, feed rate, and depth of cut), optimal conditions can be identified to minimize tool wear, improve surface finish, and reduce machining time. Achieving a high-quality surface finish is challenging with these materials. Simulations can predict the impact of different machining parameters on surface integrity, allowing for adjustments before actual machining. Three-dimensional finite element-based machining simulations are performed using the ABAQUS. The current work includes Johnson-Cook damage model parameters included in the simulation with the aid of the program ABAQUS/EXPLICIT. The numerous sets of tests carried out are also stated, along with the workpiece and tool-optimized geometry. The outcomes for cutting forces about time for Ti6Al4V and Inconel 718 are retrieved. The arbitrary Lagrangian–Eulerian approach has been used for these simulations. A coupled thermo-mechanical study is conducted on different sets of materials under various machining conditions. In addition, ultrasonic-assisted cutting on aerospace materials is also being studied, along with a comparison of the cutting forces used by conventional cutting. On the surfaces of aerospace materials that have been machined, temperature and von Mises stress distribution are discussed for both ultrasonic-assisted cutting and conventional cutting. The reaction forces generated for titanium alloy Ti6Al4V under conventional cutting are cutting force (RF3), and the thrust force (RF2) were 56 and 14 N, respectively. For the Inconel 718, the cutting and thrust forces are 75 and 27 N, respectively. The maximum temperature and stress under conventional cutting attained in Ti6Al4V are 670 K and 1.74 GPa, respectively. For the Inconel 718, the maximum temperature and stress under conventional cutting are 596 K and 1.65 GPa. There is a reduction in the forces, maximum temperature, and stress for the ultrasonic-assisted cutting.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling of wear performance and surface roughness of AA6061-T6/B4C composite under dry sliding conditions by RSM 利用 RSM 建立干滑动条件下 AA6061-T6/B4C 复合材料的磨损性能和表面粗糙度模型
IF 2.4 4区 工程技术
Saleh S Abdelhady, Ahmed Nabhan, Said H Zoalfakar, Rehab E Elbadawi
{"title":"Modeling of wear performance and surface roughness of AA6061-T6/B4C composite under dry sliding conditions by RSM","authors":"Saleh S Abdelhady, Ahmed Nabhan, Said H Zoalfakar, Rehab E Elbadawi","doi":"10.1177/09544089241276692","DOIUrl":"https://doi.org/10.1177/09544089241276692","url":null,"abstract":"The present study is an attempt to investigate the tribological behavior of friction stir processing (FSP) AA6061-T6 alloy reinforced with boron carbide (B4C) particles. The surface composites were developed to investigate wear performance and surface roughness under dry sliding conditions. The experiments were conducted using response surface methodology (RSM) to examine the effects of various B4C volume fractions, applied loads, and sliding distances. All combinations of reinforcements in AA6061-T6 hybrid composites show a good improvement in the wear properties. The results show that the wear behavior of composites is significantly impacted by the incorporation of B4C particles. This is mostly owing to the uniformity that the B4C particles developed when they distributed the reinforcements evenly in the AA 6061-T6 matrix. Analysis of variance, main effect and three-dimensional plots were used to quantify the effects of dry sliding parameters on tribological properties. The findings showed that the optimal parameters for the effective reduction of specific wear rate and coefficient of friction were a volume fraction of 10%, an applied load of 20 N, and a sliding distance of 500 m. To minimize surface roughness, the optimal test conditions were found to be 10% volume fraction, 40 N applied load, and 2500 m sliding distance. The wear surface was analyzed using energy dispersive spectroscopy (EDX) and scanning electron microscopy (SEM). The results showed that oxide layer formation was present on the wear surface and adhesive wear was the primary wear mechanism.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review on recent advancements in additive manufacturing techniques 增材制造技术最新进展综述
IF 2.4 4区 工程技术
Dushyant Dubey, Satinder Paul Singh, Bijoya Kumar Behera
{"title":"A review on recent advancements in additive manufacturing techniques","authors":"Dushyant Dubey, Satinder Paul Singh, Bijoya Kumar Behera","doi":"10.1177/09544089241275860","DOIUrl":"https://doi.org/10.1177/09544089241275860","url":null,"abstract":"This review paper systematically classifies additive manufacturing (AM) or 3D printing techniques according to American Society for Testing and Materials (ASTM) standards, which categorize these technologies into seven main groups: vat photopolymerization, material extrusion, powder-bed fusion, material jetting (MJT), binder jetting, direct energy deposition, and sheet lamination. Each of these categories is further subdivided into specific subcategories, providing a comprehensive framework to understand the diverse landscape of AM technologies. By leveraging these ASTM standards, our review aims to offer a structured and detailed overview of the capabilities and advancements within each AM technique. Recent studies and developments are incorporated to highlight the evolution of these technologies, showcasing innovations that have improved precision, material compatibility, and efficiency in manufacturing processes. Furthermore, the review critically examines the materials used, advantages, and limitations associated with each technique, exploring their applications across various industries such as aerospace, automotive, healthcare, defense, and consumer goods.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信