{"title":"Analyses of gas pulsation characteristics in the discharge pipeline of a hyper compressor","authors":"Jun Xiao, Maofei Geng","doi":"10.1177/09544089241258065","DOIUrl":"https://doi.org/10.1177/09544089241258065","url":null,"abstract":"For the analysis of gas pulsation characteristics in the pipeline systems of low density polyethylene (LDPE) hyper compressors, a time-domain calculation method for compressor pipeline gas pulsation based on real gas properties is proposed. First the thermophysical property tables are prepared with gas state parameters as independent and dependent variables. Then one-dimensional unsteady flow equations and characteristic equations for pipeline flow are established based on real gas properties. After setting pipeline parameters and boundary conditions, the flow equations are discretized using a two-step method at the inner points of the pipeline. The characteristic equations are discretized using the trapezoidal integration method at the boundary points. Thus, the time-domain solving of pulsating flow field in the pipeline is realized. A self-developed numerical code was used to conduct the time-domain calculation and analysis of gas pulsation in the discharge pipeline of a two-stage hyper compressor. The calculated pressure pulsation curves based on real gas properties are in good agreement with experimental data, with a maximum difference lower than 4% of the local average pressure, which is smaller than the difference between the results calculated based on the plane wave theory and the measured data. The analysis of gas pulsation characteristics shows that the pressure pulsation in the main pipeline is mainly contributed by the fundamental and second harmonics. The pressure pulsation in the safety valve branch is higher than that in the main pipeline, and the harmonic components falling into the acoustic resonance frequency range of this branch have significant amplitudes. The acoustic resonance frequency of the branch pipeline is not affected by the main pipeline. Pressure pulsation varies with changes in rotational speed and back pressure, and the pulsation level is more significantly affected by rotational speed compared to back pressure. The renovation scheme of connecting the safety valve branch and expansion tube in series can effectively reduce the pressure pulsation levels of the main pipeline and branch pipeline.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":"1 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141194441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of solution temperature on microstructure and mechanical properties of Al-Si-Mg aluminum alloy fabricated by wire-arc additive manufacturing","authors":"Guoqing Chen, Zhanwei Zhang, Yuanzheng Zhao, Xuming Guo","doi":"10.1177/09544089241257792","DOIUrl":"https://doi.org/10.1177/09544089241257792","url":null,"abstract":"Al-Si-Mg aluminum alloys exhibit excellent machinability as heat-treatable strengthened aluminum alloys. Heat treatment has a great influence on the microstructure and mechanical properties of Al-Si-Mg aluminum alloys. In this study, the ZL114A aluminum alloy wire was used to fabricate the Al-Si-Mg thin-walled component based on the wire-arc additive manufacturing process of metal inert-gas welding. The microstructure and mechanical properties of the ZL114A aluminum alloy components were investigated in both the as-deposited and heat treated at different solution temperatures. The results indicated that the microstructure of as-deposited ZL114A aluminum alloys consisted mainly of dendrites. The dendritic morphology disappeared after solid solution treatment (ST) at different temperatures, and the eutectic Si phase appeared coarsened and spheroidized. Numerous β″ phases were observed to have precipitated within the grains by transmission electron microscopy. The tensile properties of the alloy were improved due to precipitation strengthening of the β″ phase and spheroidization of the eutectic silicon phase. After the solid ST at 540 °C for 9 h and artificial aging treatment at 170 °C for 8 h, the yield strength and ultimate tensile strength of the alloy reached the maximum values of 344 and 377 MPa, respectively.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":"51 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141194285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synergistic approach to tribological characterization of hybrid aluminum metal matrix composites with ZrB2 and fly ash: Experimental and predictive insights","authors":"Prakash Kumar, Binay Kumar","doi":"10.1177/09544089241255931","DOIUrl":"https://doi.org/10.1177/09544089241255931","url":null,"abstract":"This research delves into the tribological performance of hybrid aluminum metal matrix composites (HAMMCs) incorporating zirconium diboride (ZrB<jats:sub>2</jats:sub>) particles and fly ash as reinforcing agents. The study employs a linear reciprocating wear test to investigate the impact of dry sliding wear on these HAMMCs under ambient and elevated temperatures. Wear mechanisms are discerned through field emission scanning electron microscopy. Optimization of wear test parameters, coefficient of friction (COF), and wear rate is achieved using the genetic algorithm. Additionally, artificial neural network (ANN) and multiple linear regression analysis are employed to formulate a predictive model for wear, estimating specific wear rate and COF under various testing conditions. The ANN predictions exhibit a deviation ranging from 0% to 1.39% from the experimental values, indicating the model's effectiveness in understanding and predicting wear behavior in the study of HAMMC.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":"29 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141194467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei Cai, Xiaojun Fu, Shangjun Ma, Xin Li, Geng Liu
{"title":"Kinematics analysis of planetary roller screw mechanism with misalignment","authors":"Wei Cai, Xiaojun Fu, Shangjun Ma, Xin Li, Geng Liu","doi":"10.1177/09544089241257224","DOIUrl":"https://doi.org/10.1177/09544089241257224","url":null,"abstract":"The misalignment is unavoidable for planetary roller screw mechanism (PRSM) in practical application due to many uncertainties. The misalignment has a strong effect on the kinematic characteristics of PRSM. However, the relevant research has been rarely reported in the past. In order to clearly present the motion characteristics, a novel kinematics model of PRSM with misalignment is established in this article. The rotational tensor theory is introduced to obtain the coordinate transformation equations. The position vectors of PRSM with misalignment are acquired to calculate the position of the contact point. The motion model of PRSM with misalignment is derived by analyzing the velocity of the contact point. Compared with some published literature, the kinematic model of PRSM is verified. Moreover, a relationship between the misalignment variates, which are the misalignment angle, the misalignment azimuth angle, and the offset distance of the nut's ending point, respectively, and the kinematic characteristics of PRSM are investigated. The results indicate that those misalignment variates have a great influence on the kinematics of PRSM and lead to fluctuations in the PRSM's transmission velocity and angular velocity ratio. The fluctuation amplitude of transmission velocity is positively correlated with misalignment angle.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":"9 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141168239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Implementation of inverse method for identification of process parameters in a laser heating process","authors":"Utpal Nath, Vinod Yadav","doi":"10.1177/09544089241256515","DOIUrl":"https://doi.org/10.1177/09544089241256515","url":null,"abstract":"Changes in process parameters can alter the temperature data of a solid body during the laser heating process. This paper proposes an inverse method to determine the laser heating parameters, namely, sheet width, sheet thickness, laser power, and scan speed of the work specimen for the given temperature response which is assigned by the user. The method uses an analytical tool on moving heat source as a forward model capable of real-time temperature prediction of the sheet under the laser heating process. The effectiveness of the present forward model that incorporated the temperature-dependent material properties is tested by experimental findings performed on Al 6061-T6 sheets. Next, an iterative search process based on heuristic method is carried out for satisfying a prescribed temperature response by the optimization of unknown parameters. To illustrate the implementation and assess the practicality of the inverse method, two examples based on laser heating applications are used. The method proposed herein recover the unknowns for the prescribed temperature response after a few iterations, provides an efficient way to optimize the laser heating process. Additionally, the effect of measurement error on the findings of the inverse problem is addressed.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":"56 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141173245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuhan Wang, Xiaochuan Wang, Yuxuan Huang, Chaoyu Xu, Jincheng Hu
{"title":"Numerical investigation on dynamic characteristics of oil-water annular flow-induced vibration in curved pipes","authors":"Yuhan Wang, Xiaochuan Wang, Yuxuan Huang, Chaoyu Xu, Jincheng Hu","doi":"10.1177/09544089241253782","DOIUrl":"https://doi.org/10.1177/09544089241253782","url":null,"abstract":"To improve the stability of water-lubricated transportation and reliability of pipes in service, the fluid–structure interaction numerical model has been established to investigate the dynamic characteristics of oil-water annular flow-induced vibration in curved pipes and the effect of main parameters in this study. The results illustrate that a single vibration mode of curved pipes is excited by oil-water annular flow, and there exists no multi-modality due to the limited pulsation of pressure and interface of two-phase flow. The change of velocities and oil-water ratios leads to change of flow pattern, making the dynamic response severer. When the oil-water ratio is larger than 2.035, its effect is greater than velocity. The physical properties of oil have a significant effect on the dynamic response. The root-mean-square dimensionless displacement A<jats:sub>Y,RMS</jats:sub>/D and maximum dimensionless displacement A<jats:sub>Y,MAX</jats:sub>/D of fuel oil-water annular flow-induced vibration decrease to 75.6% and 76.5% respectively, which means that the increase of dynamic viscosity reduces the fluid force and suppresses the vibration. A<jats:sub>Y,RMS</jats:sub>/D and A<jats:sub>Y,MAX</jats:sub>/D increases by 1.62 times when the bending angle θ increases from 30° to 90°, indicating that the increase of bending angles also leads to the severer dynamic response.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":"67 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140939919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Subramaniam Thangavel, Chennippan Maheswari, E Bhaskaran Priyanka
{"title":"Digital twin-based tig welding quality prediction using electrode tip angle degradation influencing Industry 5.0 in manufacturing sector","authors":"Subramaniam Thangavel, Chennippan Maheswari, E Bhaskaran Priyanka","doi":"10.1177/09544089241253939","DOIUrl":"https://doi.org/10.1177/09544089241253939","url":null,"abstract":"Automation in tungsten inert gas (TIG) welding is important to achieve high production rates and quality in manufacturing industries. To improve the welding process and quality inspection methodologies, the intelligent welding robot and vision-based inspection system have been researched and deployed in many engineering fields. Hence to enhance the performance and production, a digital twin-based welding system with the prediction of weld quality based on the consideration of electrode tip angle degradation. The proposed system will capture real-time electrode tip angle and weld pool temperature using a forward looking infrared (FLIR) camera along with welding current and speed correlated with tensile strength as the output parameter. To validate the analysis, support vector machine (SVM) and random forest (RF) algorithms were implemented in which the RF model performs well on the prediction of welding quality by mapping with tensile strength. RF model confirms maximum accuracy of 90% with 0.29 seconds computation time to perform prediction on the next execution of welding operation. It is inferred that if the tip angle degradation increases consecutively welding current decreases drastically impacting the weld quality from good to poor. To forecast the need for immediate or scheduled maintenance to reduce the tip angle degradation, a linear regression algorithm is implemented to enable the inspection engineer to perform maintenance without delay in production.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":"8 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140939982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peng Zhang, Bo Li, Haozhou Ma, Rui Xia, Yingwei Dong, Xuewen Wang
{"title":"Fatigue life analysis of scraper conveyor chain ring under different chain speeds and loads","authors":"Peng Zhang, Bo Li, Haozhou Ma, Rui Xia, Yingwei Dong, Xuewen Wang","doi":"10.1177/09544089241253057","DOIUrl":"https://doi.org/10.1177/09544089241253057","url":null,"abstract":"This study aims to explore how different chain speeds and loads impact the fatigue life of the scraper conveyor chain ring. To achieve this, the study validates the reliability of a coupled simulation involving multi-body dynamics and the discrete element method. It also acquires time-varying tension load spectra under various operational conditions. The research evaluates the effects of distinct chain speeds and loads on parameters such as chain tension, vibration acceleration in the Y and Z-directions of the chain ring. Furthermore, finite element simulation is employed to examine stress distribution changes and fatigue life trends within the three-chain ring structure. The findings demonstrate that Y and Z-direction vibration accelerations of the chain ring correlate positively with the load. Additionally, the vibration acceleration in the Y-direction correlates positively with the chain speed. Across different chain speeds and loads, the maximum equivalent stress in the chain ring exhibits dynamic variations mirroring the load spectrum. Within the elastic deformation range of the chain ring, the highest stress within the transition region correlates linearly with chain tension. Load has a greater effect on the fatigue life of chain rings than chain speed. The fatigue life within the transition region of the chain ring decreases exponentially with increasing load at a constant chain speed. Conversely, at a constant load, chain ring life correlates positively with chain speed. Specifically, the fatigue life of the chain ring in LS 22 amounts to 32.64 days. When both chain speed and load are adjusted by 25%, the chain ring's lifespan reduces by 51.66% during simultaneous increments and increases by 39.26% with concurrent reductions in speed and load.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":"38 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140939988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Discussion on the application of sequential turbocharging technology on trawlers","authors":"Yafei Li, Fan Shi","doi":"10.1177/09544089241251633","DOIUrl":"https://doi.org/10.1177/09544089241251633","url":null,"abstract":"To improve the performance needs of trawlers under the varying load and speed conditions of free-running and trawling operations, this article employs sequential turbocharging technology. By fitting the experimental curves of basic turbocharging and conventional turbocharging (two turbochargers), we obtained the universal characteristic curve of sequential turbocharging. Further, the propeller characteristic curves and load characteristic curves of trawlers under free-running and trawling operations were integrated. The analysis results show that the sequential turbocharging system increases the torque of trawlers by about 20% in the low-speed range; switching to two turbochargers in free-running mode reduces fuel consumption by ∼17.5 g/Wh; switching to basic turbocharging during trawling operations decreases fuel consumption by about 13.9 g/Wh. This study is not only beneficial for the economy of ships but also provides guidance for further improvements in engine mechanics, potentially attracting the interest of readers in the main engine manufacturing field.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":"11 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140939916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aykut Bacak, Andaç Batur Çolak, Ahmet Selim Dalkılıç
{"title":"Prediction of performance parameters of a hermetic reciprocating compressor under different discharge lift limiter heights by machine learning","authors":"Aykut Bacak, Andaç Batur Çolak, Ahmet Selim Dalkılıç","doi":"10.1177/09544089241249854","DOIUrl":"https://doi.org/10.1177/09544089241249854","url":null,"abstract":"The research examines the complex correlation between discharge valve properties in severe temperature circumstances, ranging from 54.4°C to −23.3°C, in accordance with ASHRAE operational guidelines. The design parameters include examining valve thicknesses of 0.127, 0.152, 0.178, and 0.2 mm, together with lengths of 14.722, 16.222, and 17.722 mm, at compressor speeds of 1300, 2100, and 3000 rpm. An artificial neural network (ANN) is used to replicate the output properties of a hermetic reciprocating compressor, which include the ratio of cooling capacity to compression power and volumetric efficiency. One hundred and eleven numerically recorded datasets are used to train the developed ANN model. The model is trained using 77 datasets, validated using 17 datasets, and tested using 17 datasets. The LM-type ANN approach is used to train the multilayer perception neural network, which consists of a hidden layer with 15 neurons. Given the proximity of the margin of deviations (MoDs) to the 0% deviation line, the variances between the ANN and fluid-structure interaction outcomes for the cooling capacity to compression power ratio and volumetric efficiency are insignificant. The average figures for the MoD output have been calculated as −0.18% and 0.06, respectively. Not only do the data points lie on the line, indicating a 0% error, but they also fall inside the interval, indicating a 10% error. In addition, the mean squared error and correlation coefficient values for the ANN model that was created are 2.04E-03 and 0.99853, respectively.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":"74 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140887906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}