Wei Cai, Xiaojun Fu, Shangjun Ma, Xin Li, Geng Liu
{"title":"带有偏差的行星滚子螺杆机构的运动学分析","authors":"Wei Cai, Xiaojun Fu, Shangjun Ma, Xin Li, Geng Liu","doi":"10.1177/09544089241257224","DOIUrl":null,"url":null,"abstract":"The misalignment is unavoidable for planetary roller screw mechanism (PRSM) in practical application due to many uncertainties. The misalignment has a strong effect on the kinematic characteristics of PRSM. However, the relevant research has been rarely reported in the past. In order to clearly present the motion characteristics, a novel kinematics model of PRSM with misalignment is established in this article. The rotational tensor theory is introduced to obtain the coordinate transformation equations. The position vectors of PRSM with misalignment are acquired to calculate the position of the contact point. The motion model of PRSM with misalignment is derived by analyzing the velocity of the contact point. Compared with some published literature, the kinematic model of PRSM is verified. Moreover, a relationship between the misalignment variates, which are the misalignment angle, the misalignment azimuth angle, and the offset distance of the nut's ending point, respectively, and the kinematic characteristics of PRSM are investigated. The results indicate that those misalignment variates have a great influence on the kinematics of PRSM and lead to fluctuations in the PRSM's transmission velocity and angular velocity ratio. The fluctuation amplitude of transmission velocity is positively correlated with misalignment angle.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":"9 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinematics analysis of planetary roller screw mechanism with misalignment\",\"authors\":\"Wei Cai, Xiaojun Fu, Shangjun Ma, Xin Li, Geng Liu\",\"doi\":\"10.1177/09544089241257224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The misalignment is unavoidable for planetary roller screw mechanism (PRSM) in practical application due to many uncertainties. The misalignment has a strong effect on the kinematic characteristics of PRSM. However, the relevant research has been rarely reported in the past. In order to clearly present the motion characteristics, a novel kinematics model of PRSM with misalignment is established in this article. The rotational tensor theory is introduced to obtain the coordinate transformation equations. The position vectors of PRSM with misalignment are acquired to calculate the position of the contact point. The motion model of PRSM with misalignment is derived by analyzing the velocity of the contact point. Compared with some published literature, the kinematic model of PRSM is verified. Moreover, a relationship between the misalignment variates, which are the misalignment angle, the misalignment azimuth angle, and the offset distance of the nut's ending point, respectively, and the kinematic characteristics of PRSM are investigated. The results indicate that those misalignment variates have a great influence on the kinematics of PRSM and lead to fluctuations in the PRSM's transmission velocity and angular velocity ratio. The fluctuation amplitude of transmission velocity is positively correlated with misalignment angle.\",\"PeriodicalId\":20552,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544089241257224\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544089241257224","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Kinematics analysis of planetary roller screw mechanism with misalignment
The misalignment is unavoidable for planetary roller screw mechanism (PRSM) in practical application due to many uncertainties. The misalignment has a strong effect on the kinematic characteristics of PRSM. However, the relevant research has been rarely reported in the past. In order to clearly present the motion characteristics, a novel kinematics model of PRSM with misalignment is established in this article. The rotational tensor theory is introduced to obtain the coordinate transformation equations. The position vectors of PRSM with misalignment are acquired to calculate the position of the contact point. The motion model of PRSM with misalignment is derived by analyzing the velocity of the contact point. Compared with some published literature, the kinematic model of PRSM is verified. Moreover, a relationship between the misalignment variates, which are the misalignment angle, the misalignment azimuth angle, and the offset distance of the nut's ending point, respectively, and the kinematic characteristics of PRSM are investigated. The results indicate that those misalignment variates have a great influence on the kinematics of PRSM and lead to fluctuations in the PRSM's transmission velocity and angular velocity ratio. The fluctuation amplitude of transmission velocity is positively correlated with misalignment angle.
期刊介绍:
The Journal of Process Mechanical Engineering publishes high-quality, peer-reviewed papers covering a broad area of mechanical engineering activities associated with the design and operation of process equipment.