Proceedings of the 2021 ACM SIGCOMM 2021 Conference最新文献

筛选
英文 中文
Concordia: teaching the 5G vRAN to share compute 康科迪亚:教5G vRAN共享计算
Proceedings of the 2021 ACM SIGCOMM 2021 Conference Pub Date : 2021-08-09 DOI: 10.1145/3452296.3472894
Xenofon Foukas, B. Radunovic
{"title":"Concordia: teaching the 5G vRAN to share compute","authors":"Xenofon Foukas, B. Radunovic","doi":"10.1145/3452296.3472894","DOIUrl":"https://doi.org/10.1145/3452296.3472894","url":null,"abstract":"Virtualized Radio Access Network (vRAN) offers a cost-efficient solution for running the 5G RAN as a virtualized network function (VNF) on commodity hardware. The vRAN is more efficient than traditional RANs, as it multiplexes several base station workloads on the same compute hardware. Our measurements show that, whilst this multiplexing provides efficiency gains, more than 50% of the CPU cycles in typical vRAN settings still remain unused. A way to further improve CPU utilization is to collocate the vRAN with general-purpose workloads. However, to maintain performance, vRAN tasks have sub-millisecond latency requirements that have to be met 99.999% of times. We show that this is difficult to achieve with existing systems. We propose Concordia, a userspace deadline scheduling framework for the vRAN on Linux. Concordia builds prediction models using quantile decision trees to predict the worst case execution times of vRAN signal processing tasks. The Concordia scheduler is fast (runs every 20 us) and the prediction models are accurate, enabling the system to reserve a minimum number of cores required for vRAN tasks, leaving the rest for general-purpose workloads. We evaluate Concordia on a commercial-grade reference vRAN platform. We show that it meets the 99.999% reliability requirements and reclaims more than 70% of idle CPU cycles without affecting the RAN performance.","PeriodicalId":20487,"journal":{"name":"Proceedings of the 2021 ACM SIGCOMM 2021 Conference","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81341931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 28
Solar superstorms: planning for an internet apocalypse 太阳超级风暴:互联网末日计划
Proceedings of the 2021 ACM SIGCOMM 2021 Conference Pub Date : 2021-08-09 DOI: 10.1145/3452296.3472916
S. Jyothi
{"title":"Solar superstorms: planning for an internet apocalypse","authors":"S. Jyothi","doi":"10.1145/3452296.3472916","DOIUrl":"https://doi.org/10.1145/3452296.3472916","url":null,"abstract":"Black swan events are hard-to-predict rare events that can significantly alter the course of our lives. The Internet has played a key role in helping us deal with the coronavirus pandemic, a recent black swan event. However, Internet researchers and operators are mostly blind to another black swan event that poses a direct threat to Internet infrastructure. In this paper, we investigate the impact of solar superstorms that can potentially cause large-scale Internet outages covering the entire globe and lasting several months. We discuss the challenges posed by such activity and currently available mitigation techniques. Using real-world datasets, we analyze the robustness of the current Internet infrastructure and show that submarine cables are at greater risk of failure compared to land cables. Moreover, the US has a higher risk for disconnection compared to Asia. Finally, we lay out steps for improving the Internet's resiliency.","PeriodicalId":20487,"journal":{"name":"Proceedings of the 2021 ACM SIGCOMM 2021 Conference","volume":"54 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88213475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 24
CliqueMap
Proceedings of the 2021 ACM SIGCOMM 2021 Conference Pub Date : 2021-08-09 DOI: 10.1145/3452296.3472934
Arjun Singhvi, Aditya Akella, Maggie Anderson, R. Cauble, Harshad Deshmukh, D. Gibson, Milo M. K. Martin, Amanda Strominger, T. Wenisch, Amin Vahdat
{"title":"CliqueMap","authors":"Arjun Singhvi, Aditya Akella, Maggie Anderson, R. Cauble, Harshad Deshmukh, D. Gibson, Milo M. K. Martin, Amanda Strominger, T. Wenisch, Amin Vahdat","doi":"10.1145/3452296.3472934","DOIUrl":"https://doi.org/10.1145/3452296.3472934","url":null,"abstract":"Distributed in-memory caching is a key component of modern Internet services. Such caches are often accessed via remote procedure call (RPC), as RPC frameworks provide rich support for productionization, including protocol versioning, memory efficiency, auto-scaling, and hitless upgrades. However, full-featured RPC limits performance and scalability as it incurs high latencies and CPU overheads. Remote Memory Access (RMA) offers a promising alternative, but meeting productionization requirements can be a significant challenge with RMA-based systems due to limited programmability and narrow RMA primitives. This paper describes the design, implementation, and experience derived from CliqueMap, a hybrid RMA/RPC caching system. CliqueMap has been in production use in Google's datacenters for over three years, currently serves more than 1PB of DRAM, and underlies several end-user visible services. CliqueMap makes use of performant and efficient RMAs on the critical serving path and judiciously applies RPCs toward other functionality. The design embraces lightweight replication, client-based quoruming, self-validating server responses, per-operation client-side retries, and co-design with the network layers. These foci lead to a system resilient to the rigors of production and frequent post deployment evolution.","PeriodicalId":20487,"journal":{"name":"Proceedings of the 2021 ACM SIGCOMM 2021 Conference","volume":"233 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77009089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
Seven years in the life of Hypergiants' off-nets 在超巨星的网外生活了七年
Proceedings of the 2021 ACM SIGCOMM 2021 Conference Pub Date : 2021-08-09 DOI: 10.1145/3452296.3472928
Petros Gigis, Matt Calder, Lefteris Manassakis, George Nomikos, Vasileios Kotronis, X. Dimitropoulos, Ethan Katz-Bassett, Georgios Smaragdakis
{"title":"Seven years in the life of Hypergiants' off-nets","authors":"Petros Gigis, Matt Calder, Lefteris Manassakis, George Nomikos, Vasileios Kotronis, X. Dimitropoulos, Ethan Katz-Bassett, Georgios Smaragdakis","doi":"10.1145/3452296.3472928","DOIUrl":"https://doi.org/10.1145/3452296.3472928","url":null,"abstract":"Content Hypergiants deliver the vast majority of Internet traffic to end users. In recent years, some have invested heavily in deploying services and servers inside end-user networks. With several dozen Hypergiants and thousands of servers deployed inside networks, these off-net (meaning outside the Hypergiant networks) deployments change the structure of the Internet. Previous efforts to study them have relied on proprietary data or specialized per-Hypergiant measurement techniques that neither scale nor generalize, providing a limited view of content delivery on today's Internet. In this paper, we develop a generic and easy to implement methodology to measure the expansion of Hypergiants' off-nets. Our key observation is that Hypergiants increasingly encrypt their traffic to protect their customers' privacy. Thus, we can analyze publicly available Internet-wide scans of port 443 and retrieve TLS certificates to discover which IP addresses host Hypergiant certificates in order to infer the networks hosting off-nets for the corresponding Hypergiants. Our results show that the number of networks hosting Hypergiant off-nets has tripled from 2013 to 2021, reaching 4.5k networks. The largest Hypergiants dominate these deployments, with almost all of these networks hosting an off-net for at least one -- and increasingly two or more -- of Google, Netflix, Facebook, or Akamai. These four Hypergiants have off-nets within networks that provide access to a significant fraction of end user population.","PeriodicalId":20487,"journal":{"name":"Proceedings of the 2021 ACM SIGCOMM 2021 Conference","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83281092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 33
Verifying learning-augmented systems 验证学习增强系统
Proceedings of the 2021 ACM SIGCOMM 2021 Conference Pub Date : 2021-08-09 DOI: 10.1145/3452296.3472936
Tomer Eliyahu, Yafim Kazak, Guy Katz, Michael Schapira
{"title":"Verifying learning-augmented systems","authors":"Tomer Eliyahu, Yafim Kazak, Guy Katz, Michael Schapira","doi":"10.1145/3452296.3472936","DOIUrl":"https://doi.org/10.1145/3452296.3472936","url":null,"abstract":"The application of deep reinforcement learning (DRL) to computer and networked systems has recently gained significant popularity. However, the obscurity of decisions by DRL policies renders it hard to ascertain that learning-augmented systems are safe to deploy, posing a significant obstacle to their real-world adoption. We observe that specific characteristics of recent applications of DRL to systems contexts give rise to an exciting opportunity: applying formal verification to establish that a given system provably satisfies designer/user-specified requirements, or to expose concrete counter-examples. We present whiRL, a platform for verifying DRL policies for systems, which combines recent advances in the verification of deep neural networks with scalable model checking techniques. To exemplify its usefulness, we employ whiRL to verify natural equirements from recently introduced learning-augmented systems for three real-world environments: Internet congestion control, adaptive video streaming, and job scheduling in compute clusters. Our evaluation shows that whiRL is capable of guaranteeing that natural requirements from these systems are satisfied, and of exposing specific scenarios in which other basic requirements are not.","PeriodicalId":20487,"journal":{"name":"Proceedings of the 2021 ACM SIGCOMM 2021 Conference","volume":"23 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83374289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 37
Snowcap: synthesizing network-wide configuration updates Snowcap:综合全网配置更新
Proceedings of the 2021 ACM SIGCOMM 2021 Conference Pub Date : 2021-08-09 DOI: 10.1145/3452296.3472915
Tibor Schneider, Rüdiger Birkner, L. Vanbever
{"title":"Snowcap: synthesizing network-wide configuration updates","authors":"Tibor Schneider, Rüdiger Birkner, L. Vanbever","doi":"10.1145/3452296.3472915","DOIUrl":"https://doi.org/10.1145/3452296.3472915","url":null,"abstract":"Large-scale reconfiguration campaigns tend to be nerve-racking for network operators as they can lead to significant network downtimes, decreased performance, and policy violations. Unfortunately, existing reconfiguration frameworks often fall short in practice as they either only support a small set of reconfiguration scenarios or simply do not scale. We address these problems with Snowcap, the first network reconfiguration framework which can synthesize configuration updates that comply with arbitrary hard and soft specifications, and involve arbitrary routing protocols. Our key contribution is an efficient search procedure which leverages counter-examples to efficiently navigate the space of configuration updates. Given a reconfiguration ordering which violates the desired specifications, our algorithm automatically identifies the problematic commands so that it can avoid this particular order in the next iteration. We fully implemented Snowcap and extensively evaluated its scalability and effectiveness on real-world topologies and typical, large-scale reconfiguration scenarios. Even for large topologies, Snowcap finds a valid reconfiguration ordering with minimal side-effects (i.e., traffic shifts) within a few seconds at most.","PeriodicalId":20487,"journal":{"name":"Proceedings of the 2021 ACM SIGCOMM 2021 Conference","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81901202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
Capacity-efficient and uncertainty-resilient backbone network planning with hose 带软管的容量效率和不确定性弹性骨干网规划
Proceedings of the 2021 ACM SIGCOMM 2021 Conference Pub Date : 2021-08-09 DOI: 10.1145/3452296.3472918
S. Ahuja, Varun Gupta, V. Dangui, Soshant Bali, A. Gopalan, Hao Zhong, Petr Lapukhov, Yiting Xia, Ying Zhang
{"title":"Capacity-efficient and uncertainty-resilient backbone network planning with hose","authors":"S. Ahuja, Varun Gupta, V. Dangui, Soshant Bali, A. Gopalan, Hao Zhong, Petr Lapukhov, Yiting Xia, Ying Zhang","doi":"10.1145/3452296.3472918","DOIUrl":"https://doi.org/10.1145/3452296.3472918","url":null,"abstract":"This paper presents Facebook's design and operational experience of a Hose-based backbone network planning system. This initial adoption of the Hose model in network planning is driven by the capacity and demand uncertainty pressure of backbone expansion. Since the Hose model abstracts the aggregated traffic demand per site, peak traffic flows at different times can be multiplexed to save capacity and buffer traffic spikes. Our core design involves heuristic algorithms to select Hose-compliant traffic matrices and cross-layer optimization between the optical and IP networks. We evaluate the system performance in production and share insights from years of production experience. Hose-based network planning can save 17.4% capacity and drops 75% less traffic under fiber cuts. As the first study of Hose in network planning, our work has the potential to inspire follow-up research.","PeriodicalId":20487,"journal":{"name":"Proceedings of the 2021 ACM SIGCOMM 2021 Conference","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90204451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
LAVA 熔岩
Proceedings of the 2021 ACM SIGCOMM 2021 Conference Pub Date : 2021-08-09 DOI: 10.1007/978-3-540-72816-0_12856
R. I. Zelaya, W. Sussman, Jeremy Gummeson, Kyle Jamieson, Wenjun Hu
{"title":"LAVA","authors":"R. I. Zelaya, W. Sussman, Jeremy Gummeson, Kyle Jamieson, Wenjun Hu","doi":"10.1007/978-3-540-72816-0_12856","DOIUrl":"https://doi.org/10.1007/978-3-540-72816-0_12856","url":null,"abstract":"","PeriodicalId":20487,"journal":{"name":"Proceedings of the 2021 ACM SIGCOMM 2021 Conference","volume":"76 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86180528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Designing data center networks using bottleneck structures 使用瓶颈结构设计数据中心网络
Proceedings of the 2021 ACM SIGCOMM 2021 Conference Pub Date : 2021-08-09 DOI: 10.1145/3452296.3472898
Jordi Ros-Giralt, Noah Amsel, Sruthi Yellamraju, J. Ezick, R. Lethin, Yuang Jiang, Aosong Feng, L. Tassiulas, Zhenguo Wu, Min Yee Teh, K. Bergman
{"title":"Designing data center networks using bottleneck structures","authors":"Jordi Ros-Giralt, Noah Amsel, Sruthi Yellamraju, J. Ezick, R. Lethin, Yuang Jiang, Aosong Feng, L. Tassiulas, Zhenguo Wu, Min Yee Teh, K. Bergman","doi":"10.1145/3452296.3472898","DOIUrl":"https://doi.org/10.1145/3452296.3472898","url":null,"abstract":"This paper provides a mathematical model of data center performance based on the recently introduced Quantitative Theory of Bottleneck Structures (QTBS). Using the model, we prove that if the traffic pattern is textit{interference-free}, there exists a unique optimal design that both minimizes maximum flow completion time and yields maximal system-wide throughput. We show that interference-free patterns correspond to the important set of patterns that display data locality properties and use these theoretical insights to study three widely used interconnects---fat-trees, folded-Clos and dragonfly topologies. We derive equations that describe the optimal design for each interconnect as a function of the traffic pattern. Our model predicts, for example, that a 3-level folded-Clos interconnect with radix 24 that routes 10% of the traffic through the spine links can reduce the number of switches and cabling at the core layer by 25% without any performance penalty. We present experiments using production TCP/IP code to empirically validate the results and provide tables for network designers to identify optimal designs as a function of the size of the interconnect and traffic pattern.","PeriodicalId":20487,"journal":{"name":"Proceedings of the 2021 ACM SIGCOMM 2021 Conference","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86194552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
From IP to transport and beyond: cross-layer attacks against applications 从IP到传输及其他:针对应用程序的跨层攻击
Proceedings of the 2021 ACM SIGCOMM 2021 Conference Pub Date : 2021-08-09 DOI: 10.1145/3452296.3472933
Tianxiang Dai, Philipp Jeitner, Haya Shulman, M. Waidner
{"title":"From IP to transport and beyond: cross-layer attacks against applications","authors":"Tianxiang Dai, Philipp Jeitner, Haya Shulman, M. Waidner","doi":"10.1145/3452296.3472933","DOIUrl":"https://doi.org/10.1145/3452296.3472933","url":null,"abstract":"We perform the first analysis of methodologies for launching DNS cache poisoning: manipulation at the IP layer, hijack of the inter-domain routing and probing open ports via side channels. We evaluate these methodologies against DNS resolvers in the Internet and compare them with respect to effectiveness, applicability and stealth. Our study shows that DNS cache poisoning is a practical and pervasive threat. We then demonstrate cross-layer attacks that leverage DNS cache poisoning for attacking popular systems, ranging from security mechanisms, such as RPKI, to applications, such as VoIP. In addition to more traditional adversarial goals, most notably impersonation and Denial of Service, we show for the first time that DNS cache poisoning can even enable adversaries to bypass cryptographic defences: we demonstrate how DNS cache poisoning can facilitate BGP prefix hijacking of networks protected with RPKI even when all the other networks apply route origin validation to filter invalid BGP announcements. Our study shows that DNS plays a much more central role in the Internet security than previously assumed. We recommend mitigations for securing the applications and for preventing cache poisoning.","PeriodicalId":20487,"journal":{"name":"Proceedings of the 2021 ACM SIGCOMM 2021 Conference","volume":"44 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83814480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信