S. Ahuja, Varun Gupta, V. Dangui, Soshant Bali, A. Gopalan, Hao Zhong, Petr Lapukhov, Yiting Xia, Ying Zhang
{"title":"Capacity-efficient and uncertainty-resilient backbone network planning with hose","authors":"S. Ahuja, Varun Gupta, V. Dangui, Soshant Bali, A. Gopalan, Hao Zhong, Petr Lapukhov, Yiting Xia, Ying Zhang","doi":"10.1145/3452296.3472918","DOIUrl":null,"url":null,"abstract":"This paper presents Facebook's design and operational experience of a Hose-based backbone network planning system. This initial adoption of the Hose model in network planning is driven by the capacity and demand uncertainty pressure of backbone expansion. Since the Hose model abstracts the aggregated traffic demand per site, peak traffic flows at different times can be multiplexed to save capacity and buffer traffic spikes. Our core design involves heuristic algorithms to select Hose-compliant traffic matrices and cross-layer optimization between the optical and IP networks. We evaluate the system performance in production and share insights from years of production experience. Hose-based network planning can save 17.4% capacity and drops 75% less traffic under fiber cuts. As the first study of Hose in network planning, our work has the potential to inspire follow-up research.","PeriodicalId":20487,"journal":{"name":"Proceedings of the 2021 ACM SIGCOMM 2021 Conference","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM SIGCOMM 2021 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3452296.3472918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
This paper presents Facebook's design and operational experience of a Hose-based backbone network planning system. This initial adoption of the Hose model in network planning is driven by the capacity and demand uncertainty pressure of backbone expansion. Since the Hose model abstracts the aggregated traffic demand per site, peak traffic flows at different times can be multiplexed to save capacity and buffer traffic spikes. Our core design involves heuristic algorithms to select Hose-compliant traffic matrices and cross-layer optimization between the optical and IP networks. We evaluate the system performance in production and share insights from years of production experience. Hose-based network planning can save 17.4% capacity and drops 75% less traffic under fiber cuts. As the first study of Hose in network planning, our work has the potential to inspire follow-up research.