{"title":"Strain sensing performance of poly (vinylidene fluoride) - Onium salt composite sensor to mechanical vibration and impact loading","authors":"Anjana Jain, H. R., Enoos Dange, Jayanth Kumar S","doi":"10.1177/09673911221103880","DOIUrl":"https://doi.org/10.1177/09673911221103880","url":null,"abstract":"Piezoelectric polymer Poly (vinylidene fluoride) (PVDF) is extensively used as sensor and actuator devices because of their excellent piezoelectric and pyroelectric properties. The melting point of PVDF, however is relatively low and the service temperature of PVDF is up to 100oC. This restricts the use of PVDF in high temperature applications. This can be improved by adding appropriate fillers to the PVDF. In the present study, a composite of PVDF-Onium salt has been developed and characterized to improve the thermal efficiency of PVDF for high temperature applications. Poly (vinylidene fluoride)-Onium salt composite films have been developed using the solvent cast method and characterized for structural, surface and electrical properties to investigate the presence of β-phase (required for sensor applications) through X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimeter, Raman and Infrared spectra, and dielectric properties. The melting point of PVDF-Onium salt composite was found to be higher (175°C) as compared to the PVDF polymer alone (168.2°C) which has been discussed in detail. The PVDF-Onium salt composite sensors were further tested for dynamic strain sensing application for the first time. The performance of these sensors was evaluated by recording the vibration modes of the cantilever beam and resulting from impact loading.","PeriodicalId":20417,"journal":{"name":"Polymers and Polymer Composites","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87867028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of hybridization of novel African teff and snake grass fibers reinforced epoxy composites with bio castor seed shell filler: Experimental investigation","authors":"M. K, R. R, S. S, M. M.","doi":"10.1177/09673911221102288","DOIUrl":"https://doi.org/10.1177/09673911221102288","url":null,"abstract":"The main aim of this research was to fabricate novel African teff and snake grass fibers reinforced hybrid epoxy composites with bio castor seed shell powder as filler using compression molding method as a function of varying fiber weight fraction from 5 to 25 wt%. The African teff and snake grass fibers were chemically treated with 5% NaOH to enhance fiber outer surface by removing hemicellulose, lignin, wax, and oil contents. The tensile, flexural, impact, interlaminar shear strength, and hardness of the alkaline treated hybrid composites were determined as per ASTM standards to evaluate the effect of fiber weight fraction on the developed composites. The chemical bonding between the treated fiber and NaOH agents was verified through Fourier transform infrared analysis. The adhesion between the treated fiber and matrix was analyzed by using a scanning electron microscope. The results of the investigation indicated that the mechanical properties improved with the increase in African teff fiber up to 20 wt. % and deteriorated thereafter. It was also observed that the combined influence of bio castor seed shell powder along with natural fibers over the mechanical properties was higher.","PeriodicalId":20417,"journal":{"name":"Polymers and Polymer Composites","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85621818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Flexural Properties of 3D-printed hierarchical-sinusoidal corrugated core sandwich panels with natural fiber reinforced skins","authors":"M. Shahkarami, A. Zeinedini","doi":"10.1177/09673911221101299","DOIUrl":"https://doi.org/10.1177/09673911221101299","url":null,"abstract":"The main aim of this study is to investigate the effect of printed hierarchical-sinusoidal corrugated core patterns and the load direction on the flexural properties of the cotton/epoxy composites sandwich panels. For the cores, six sinusoidal corrugated structures were considered. Besides, possible arrangements (transvers or longitudinal wave, arch downward or upward) of the sinusoidal corrugated cores with respect to the loading direction were considered. Totally, 72 cores were fabricated using a 3D printer and poly lactic acid material. It was observed that for the transverse arrangement, the flexural strength of sandwich panels is significantly improved by changing the pattern from the simple form to the hierarchical patterns. In contrast, for the longitudinal pattern, improvement in the flexural properties was not obtained by changing the core pattern. It was also manifested that corrugated core arrangement has remarkable effect on the mechanical properties of the sandwich panels. For the transverse pattern core panel, the maximum values of normalized face-sheet bending strength (FBS), core shear ultimate strength (CSUS) and energy absorption were obtained as 7.17 MPa/kg, 223.91 MPa/kg and 114.56 J/kg, respectively. Besides, for the longitudinal pattern core panel, the maximum values of FBS, CSUS and energy absorption were obtained as 7.86 MPa/kg, 245.78 MPa/kg and 330.75 J/kg, respectively. Comparing the obtained results with the available data in the literature manifested that the flexural properties of the corrugated core sandwich structures are significantly improved by changing its core system from the other materials to the printed material.","PeriodicalId":20417,"journal":{"name":"Polymers and Polymer Composites","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91142227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Aghayan, Javad Seyfi, M. Asadollahzadeh, S. M. Davachi, M. Hasani
{"title":"Preparation and characterization of antibacterial chitosan nanocomposites loaded with cellulose/chitosan nanofibers and essential oils","authors":"N. Aghayan, Javad Seyfi, M. Asadollahzadeh, S. M. Davachi, M. Hasani","doi":"10.1177/09673911221098732","DOIUrl":"https://doi.org/10.1177/09673911221098732","url":null,"abstract":"Multi-component nanocomposites based on chitosan, cellulose/chitosan nanofibers, and essential oils were developed in this study through solution casting technique. Both surface and structural properties of the nanocomposites were characterized. Surface morphology results revealed that the chitosan nanofibers were more localized at the films’ surface than the cellulose nanofibers, leading to enhanced hydrophobicity (contact angle = 95°). Moreover, the essential oils were distributed as micrometer-scale oil domains at the films’ surfaces, making them heterogeneous, leading to a much more hydrophilic character (contact angle = 30–36°). X-ray diffraction results revealed the disrupting role of nanofibers on the crystalline structure of chitosan; however, upon the addition of essential oils, the crystalline network was less affected than the pure chitosan film. The enhanced stiffness of the films in the presence of nanofibers was demonstrated by dynamic mechanical analysis. In contrast, the addition of essential oils highly reduced the stiffness, making the films much more flexible, which could benefit food packaging applications. Antibacterial properties were highly increased in the presence of essential oils, and the barrier properties were also improved, especially by the use of chitosan nanofibers. In conclusion, the developed nanofiber-loaded chitosan films could be considered innovative packaging to promote food conservation.","PeriodicalId":20417,"journal":{"name":"Polymers and Polymer Composites","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90766677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Review of carbon fiber-reinforced sandwich structures","authors":"Tidong Zhao, Jing Yang, Jinxiang Chen, Sujun Guan","doi":"10.1177/09673911221098729","DOIUrl":"https://doi.org/10.1177/09673911221098729","url":null,"abstract":"This paper first reviews the research progress of carbon fiber-reinforced sandwich plates with grid cores, truss cores, and foam cores, and the results can be summarized in the following four points. 1) The load-bearing capacity and energy absorption capacity of grid-core and foam-core structures under bending loads have been improved by toughening with short fibers and Z-pinned fibers. 2) The progressive buckling mode of the core layer under compressive loading can significantly improve the energy absorption capacity of a sandwich structure. 3) The compressive failure of a truss-core sandwich structure is closely related to the strength at the nodes. 4) Following a literature review, this paper discusses the existing problems in sandwich structures and the corresponding countermeasures, and the results can be summarized in the following two points. 1) After implementing the current toughening measures, the debonding is improved to a certain extent; however, this approach does not prevent debonding. 2) No method has been presented that can increase the strength of the end nodes in truss-core members. Therefore, it is encouraging that a trabeculae/honeycomb-core sandwich structure composed of fiber-reinforced proteins—mimicking the biological structure found in a beetle forewing—can effectively solve the abovementioned problems.","PeriodicalId":20417,"journal":{"name":"Polymers and Polymer Composites","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73364827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Hadimani, H. N. Narasimha Murthy, R. Mudbidre, G. Angadi
{"title":"Effect of melamine cyanurate on thermal and flame-retardant behaviour of chopped glass fibre reinforced polyphenylene ether/polystyrene/nylon-6","authors":"P. Hadimani, H. N. Narasimha Murthy, R. Mudbidre, G. Angadi","doi":"10.1177/09673911221093165","DOIUrl":"https://doi.org/10.1177/09673911221093165","url":null,"abstract":"This paper deals with the effect of melamine cyanurate on the thermal and fire retardant behaviour of chopped glass fibre (40 wt.%) reinforced polyphenylene ether/polystyrene/nylon-6 (40/40/20 wt. %) which are processed in a twin screw co-rotating extruder. The composite specimens were fabricated by injection moulding. Addition of melamine cyanurate decreased the amount of toxic gases and organic volatile compounds, crystallinity, crystalline temperature and melt temperature but the same fire-retardant increased glass transition temperature and heat distortion temperature of the ternary alloy. Flame retardancy with V0 and V2 rating along with Limiting Oxygen Index 35% was observed in UL94 test for 5 wt. % and 10 wt. % addition of melamine cyanurate, respectively. Addition of melamine cyanurate increased tensile modulus and elongation at break but decreased the melt flow rate and the moisture content of the ternary alloy.","PeriodicalId":20417,"journal":{"name":"Polymers and Polymer Composites","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77563689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Akash Gupta, Manjeet Singh, J. Singh, Sunpreet Singh, C. Prakash
{"title":"A critical review on damage modeling and failure analysis of pin joints in fiber reinforced composite laminates","authors":"Akash Gupta, Manjeet Singh, J. Singh, Sunpreet Singh, C. Prakash","doi":"10.1177/09673911221099764","DOIUrl":"https://doi.org/10.1177/09673911221099764","url":null,"abstract":"Fiber-reinforced composite material plays a vital role in structural engineering due to its lightweight and high strength ratio which becomes a key material in a mechanically fastened pin joint. Recent review articles in this area were restricted to the numerical and experimental approaches which are used for strength prediction of pin joints in polymer matrix composites. The present study begins with an extensive analysis of relevant studies in the provided structurally clamped joint region using numerous numerical approaches and theories of failure. Numerous experimental and numerical approaches are available nowadays and have been cited by the researchers in their respective research to foretell the damage initiation and failure mode in the composite joint. The study gives the review of different numerical analyses of composite joints by utilizing interactive criteria for failure analysis, viz. Tsai-Wu, Tsai-Hill, Yamada Sun’s theory predicts failure using higher-order polynomial equations that comprise all stress or strain components, whereas limit stress criteria i.e. Maximum stress criterion which uses linear equations for finding the solution. Progressive Damage Analysis (PDA) quantifies matrix and fiber failure using the material depletion rule preceded by Hashin’s theory which offers a good interpretation irrespective of the types of composite material. In the end, various parameters are discussed which enhance joint performance under different loading conditions.","PeriodicalId":20417,"journal":{"name":"Polymers and Polymer Composites","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87583283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancement of filament wound glass fiber/epoxy-based cylindrical composites by toughening with single-walled carbon nanotubes","authors":"Zeynep Ay Solak, Osman Kartav, M. Tanoğlu","doi":"10.1177/09673911221086718","DOIUrl":"https://doi.org/10.1177/09673911221086718","url":null,"abstract":"In this study, the effect of incorporating nano-sized fillers (noncovalently functionalized with ethoxylated alcohol chemical-vapor-deposition-grown SWCNTs) within an epoxy resin on the performance of filament wound glass fiber (GF)-based cylindrical composites (GFCCs) was investigated. For this purpose, SWCNTs were dispersed with the concentration of 0.05 and 0.1 weight percent (wt.%) within an epoxy resin using mechanical stirring and calendaring (3-roll-milling) techniques. The rheological behavior of the SWCNT incorporated epoxy mixture was characterized to determine the suitability of blends for the filament winding process. It was revealed that the viscosity value of the resin was not significantly affected by the addition of SWCNTs in given concentrations. Moreover, contact angle measurements were also performed on the SWCNT/epoxy blends dropped on the GF for the evaluation of the wettability behavior of the GF in the presence of the SWCNTs in relevant concentrations. Eventually, it was observed that the wettability behavior of GF was not reasonably affected by the presence of the SWCNTs. The double cantilever beam (DCB), flexural, and short beam shear (SBS) tests were performed on the reference and SWCNT-modified GFCC specimens to evaluate the effects of the SWCNT presence on the interlaminar fracture toughness and out-of-plane properties of GFCCs. The fractured surfaces after the DCB and SBS tests were analyzed under the scanning electron microscopy to reveal the toughening mechanisms and the filler morphologies. Consequently, although SWCNT incorporation was on the outermost layer of GFCCs, it was found that the interlaminar shear strength (ILSS) values and Mode I interlaminar fracture toughness values of the curved composite samples were improved up to 22 and 216%, respectively, due to the presence of the SWCNTs.","PeriodicalId":20417,"journal":{"name":"Polymers and Polymer Composites","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91523084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Haghighi, Ali Khodadadi, H. Golestanian, F. Aghadavoudi
{"title":"Mechanical properties of epoxy-based nanocomposites with functional nanofillers","authors":"M. Haghighi, Ali Khodadadi, H. Golestanian, F. Aghadavoudi","doi":"10.1177/09673911221080748","DOIUrl":"https://doi.org/10.1177/09673911221080748","url":null,"abstract":"In this study, the effects of functional nanofillers, nanofiller type, and nanofiller content on two-phase and hybrid nanocomposite mechanical properties are investigated experimentally. Nanocomposite samples containing different amounts of Multi-Walled Carbon Nanotubes (MWCNTs), graphene nanoplatelets (GNPs), functional multi-walled carbon nanotubes (MWCNT-COOHs), and functional graphene nanoplatelets (GNP Oxides) were prepared and tested. ML-506 resin and HA-11 hardener were used as the matrix. Nanocomposite elastic modulus, ultimate tensile strength, and elongation to failure are determined. The results suggest that resin elastic modulus increases with nanofiller weight fraction. Also, functional nanofillers are more effective reinforcements. Carbon nanotubes and Functional Carbon Nanotube (FCNT) nanofillers have a higher effect on nanocomposite ultimate tensile strength compared to GNPs and GOs. Nanocomposite elongation to failure decreases with filler weight fraction with functional nanofiller-reinforced epoxy being the most brittle. Field emission scanning electron microscopy images, taken from the samples, suggest that functional nanofillers disperse better in the epoxy resin and improve resin mechanical properties more effectively. In addition, molecular dynamics simulation results suggest that functional nanofillers improve nanocomposite properties by improving filler/matrix adhesion.","PeriodicalId":20417,"journal":{"name":"Polymers and Polymer Composites","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84751445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jack J Kenned, C. S. Kumar, K. Sankaranarayanasamy
{"title":"Evaluation of structural integrity of needle punched banana fiber reinforced industrial safety helmets","authors":"Jack J Kenned, C. S. Kumar, K. Sankaranarayanasamy","doi":"10.1177/09673911221074889","DOIUrl":"https://doi.org/10.1177/09673911221074889","url":null,"abstract":"The purpose of this work is to fabricate and analyse a light weight, recyclable, and non-toxic natural fiber reinforced industrial safety helmet. The fibers were extracted from agro-waste pseudostem of nendran variety banana plant. A facile needle punching technique was employed on banana fibers to produce a needle punched non-woven banana fiber fabric of enhanced mechanical properties without any chemical treatment. Subsequently, the needle punched banana fibers were impregnated with general purpose helmet grade polyester resin in an ISI (Indian standards Institute) endorsed mold to fabricate a needle punched banana fiber helmet (NPBFH). Similarly, 30 mm random banana fiber helmet (RBFH) and glass fiber reinforced helmets (RGFH) were fabricated. The fabricated helmets of 10–50 wt. % fiber content were tested as per ISI standards. The results show that the better properties were achieved at 40 wt. % of fiber content for all varieties of helmets. Significantly, the results revealed that the shock absorption, penetration resistance, and water absorption of NPBFH are 245 kgf, 4.75 mm, and 0.61%, respectively, which is much better than RBFH and comparable with RGFH. This study concluded that the NPBFH (40 wt. %) can be a potential replacement of synthetic fiber reinforced helmets for industrial applications.","PeriodicalId":20417,"journal":{"name":"Polymers and Polymer Composites","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83408236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}