具有天然纤维增强皮肤的3d打印分层正弦波纹芯夹芯板的弯曲性能

M. Shahkarami, A. Zeinedini
{"title":"具有天然纤维增强皮肤的3d打印分层正弦波纹芯夹芯板的弯曲性能","authors":"M. Shahkarami, A. Zeinedini","doi":"10.1177/09673911221101299","DOIUrl":null,"url":null,"abstract":"The main aim of this study is to investigate the effect of printed hierarchical-sinusoidal corrugated core patterns and the load direction on the flexural properties of the cotton/epoxy composites sandwich panels. For the cores, six sinusoidal corrugated structures were considered. Besides, possible arrangements (transvers or longitudinal wave, arch downward or upward) of the sinusoidal corrugated cores with respect to the loading direction were considered. Totally, 72 cores were fabricated using a 3D printer and poly lactic acid material. It was observed that for the transverse arrangement, the flexural strength of sandwich panels is significantly improved by changing the pattern from the simple form to the hierarchical patterns. In contrast, for the longitudinal pattern, improvement in the flexural properties was not obtained by changing the core pattern. It was also manifested that corrugated core arrangement has remarkable effect on the mechanical properties of the sandwich panels. For the transverse pattern core panel, the maximum values of normalized face-sheet bending strength (FBS), core shear ultimate strength (CSUS) and energy absorption were obtained as 7.17 MPa/kg, 223.91 MPa/kg and 114.56 J/kg, respectively. Besides, for the longitudinal pattern core panel, the maximum values of FBS, CSUS and energy absorption were obtained as 7.86 MPa/kg, 245.78 MPa/kg and 330.75 J/kg, respectively. Comparing the obtained results with the available data in the literature manifested that the flexural properties of the corrugated core sandwich structures are significantly improved by changing its core system from the other materials to the printed material.","PeriodicalId":20417,"journal":{"name":"Polymers and Polymer Composites","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Flexural Properties of 3D-printed hierarchical-sinusoidal corrugated core sandwich panels with natural fiber reinforced skins\",\"authors\":\"M. Shahkarami, A. Zeinedini\",\"doi\":\"10.1177/09673911221101299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main aim of this study is to investigate the effect of printed hierarchical-sinusoidal corrugated core patterns and the load direction on the flexural properties of the cotton/epoxy composites sandwich panels. For the cores, six sinusoidal corrugated structures were considered. Besides, possible arrangements (transvers or longitudinal wave, arch downward or upward) of the sinusoidal corrugated cores with respect to the loading direction were considered. Totally, 72 cores were fabricated using a 3D printer and poly lactic acid material. It was observed that for the transverse arrangement, the flexural strength of sandwich panels is significantly improved by changing the pattern from the simple form to the hierarchical patterns. In contrast, for the longitudinal pattern, improvement in the flexural properties was not obtained by changing the core pattern. It was also manifested that corrugated core arrangement has remarkable effect on the mechanical properties of the sandwich panels. For the transverse pattern core panel, the maximum values of normalized face-sheet bending strength (FBS), core shear ultimate strength (CSUS) and energy absorption were obtained as 7.17 MPa/kg, 223.91 MPa/kg and 114.56 J/kg, respectively. Besides, for the longitudinal pattern core panel, the maximum values of FBS, CSUS and energy absorption were obtained as 7.86 MPa/kg, 245.78 MPa/kg and 330.75 J/kg, respectively. Comparing the obtained results with the available data in the literature manifested that the flexural properties of the corrugated core sandwich structures are significantly improved by changing its core system from the other materials to the printed material.\",\"PeriodicalId\":20417,\"journal\":{\"name\":\"Polymers and Polymer Composites\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers and Polymer Composites\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/09673911221101299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers and Polymer Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09673911221101299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本研究的主要目的是研究印刷的分层正弦波纹芯图案和载荷方向对棉/环氧复合材料夹层板弯曲性能的影响。对于核心,考虑了六个正弦波纹结构。此外,还考虑了正弦波纹芯相对于加载方向的可能布置(横断面或纵波,向下拱或向上拱)。共使用3D打印机和聚乳酸材料制作了72个芯。结果表明,在横向布置下,将夹芯板的结构由简单的结构改为层次化的结构,可显著提高夹芯板的抗弯强度。相反,对于纵向花纹,通过改变核心花纹并不能得到弯曲性能的改善。研究还表明,波纹芯排列对夹芯板的力学性能有显著影响。横向型芯板的标准化面板抗弯强度(FBS)、芯板抗剪极限强度(CSUS)和吸能最大值分别为7.17 MPa/kg、223.91 MPa/kg和114.56 J/kg。纵向型芯板的FBS、CSUS和能量吸收的最大值分别为7.86 MPa/kg、245.78 MPa/kg和330.75 J/kg。将所得结果与现有文献数据进行比较,结果表明,将波纹芯芯夹层结构的芯芯系统由其他材料改为印刷材料后,波纹芯芯夹层结构的弯曲性能得到了显著改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flexural Properties of 3D-printed hierarchical-sinusoidal corrugated core sandwich panels with natural fiber reinforced skins
The main aim of this study is to investigate the effect of printed hierarchical-sinusoidal corrugated core patterns and the load direction on the flexural properties of the cotton/epoxy composites sandwich panels. For the cores, six sinusoidal corrugated structures were considered. Besides, possible arrangements (transvers or longitudinal wave, arch downward or upward) of the sinusoidal corrugated cores with respect to the loading direction were considered. Totally, 72 cores were fabricated using a 3D printer and poly lactic acid material. It was observed that for the transverse arrangement, the flexural strength of sandwich panels is significantly improved by changing the pattern from the simple form to the hierarchical patterns. In contrast, for the longitudinal pattern, improvement in the flexural properties was not obtained by changing the core pattern. It was also manifested that corrugated core arrangement has remarkable effect on the mechanical properties of the sandwich panels. For the transverse pattern core panel, the maximum values of normalized face-sheet bending strength (FBS), core shear ultimate strength (CSUS) and energy absorption were obtained as 7.17 MPa/kg, 223.91 MPa/kg and 114.56 J/kg, respectively. Besides, for the longitudinal pattern core panel, the maximum values of FBS, CSUS and energy absorption were obtained as 7.86 MPa/kg, 245.78 MPa/kg and 330.75 J/kg, respectively. Comparing the obtained results with the available data in the literature manifested that the flexural properties of the corrugated core sandwich structures are significantly improved by changing its core system from the other materials to the printed material.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信