{"title":"Ultrasound‐assisted liquid phase exfoliation of boron nitride nanosheets as fillers for polyacrylate pressure‐sensitive adhesives with enhanced thermal conductivity","authors":"Yuan Liu, Jimin Zhang, Shengli Chen, Yingchun Liu, Yanling Xie, Chaochao Cao, Xiongwei Qu","doi":"10.1002/pat.6541","DOIUrl":"https://doi.org/10.1002/pat.6541","url":null,"abstract":"Hexagonal boron nitride (h‐BN) is widely used as a filler to improve the thermal conductivity of polymers due to the high thermal conductivity, electrical insulation, and chemical stability. However, the small lateral‐size and poor compatibility limit h‐BN's performances and applications in thermal management. Here, boron nitride nanosheets (BNNSs) were prepared by liquid‐phase ultrasonic exfoliation using isopropanol (IPA) as solvent. Specifically, the BNNSs obtained by ultrasonication for 8 h with an initial concentration of h‐BN of 8 mg/mL have the best exfoliation effect and a high yield of 19.8%, showing a large lateral‐size of 1–2 μm and an ultra‐thin thickness. Then, the resulting BNNSs can be modified by grafting silane coupling agent of KH560 (m‐BNNSs), their micromorphology and chemical composition are characterized by various microscopies and spectrometers. Subsequently, polyacrylate pressure‐sensitive adhesives (PSAs) composites are prepared using m‐BNNSs as a thermally conductive filler by UV bulk polymerization, their thermal conductivity can be greatly improved by 250% compared with that of pure PSAs. For comparison, the thermal conductivity of m‐BNNSs/PSAs composites with filler content of 25 wt% is as high as 0.4382 W/(m K), which is 1.6 times higher than that of h‐BN/PSAs composites. In addition, the incorporation of BNNSs will improve the thermal stability, hardness, and 180° peeling force of the PSAs composites, which will stimulate the practical application of PSAs materials.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":"47 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141948035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shengnan Jiang, Runqi Zhang, Shuqiang Ding, Shangyi Yang, Hongzhen Wang
{"title":"One facile route to prepare high‐performance radiation resistant EPDM rubber composites through graphite modification technology","authors":"Shengnan Jiang, Runqi Zhang, Shuqiang Ding, Shangyi Yang, Hongzhen Wang","doi":"10.1002/pat.6525","DOIUrl":"https://doi.org/10.1002/pat.6525","url":null,"abstract":"Modification and improvement of aging resistance in nuclear power environment for the ethylene‐propylene‐diene (EPDM) rubber has been attracting the attention of scientists. In this article, graphite modified EPDM composites (ultrafine graphite [UG]/EPDM) were prepared, and effect of graphite with sizes of 13, 2.6, and 1.3 μm on the processability, vulcanization parameters, mechanical properties, stability of radiation aging of EPDM composites were investigated, respectively. The results showed that EPDM rubber was an irradiated crosslinked polymer. The Mooney viscosity and crosslinking density of EPDM gradually increased with increasing graphite content under the effect of physical and chemical cross‐linking of graphite. The lamellar structure of graphite particles in the rubber matrix is beneficial to improvement of the mechanical properties and aging resistance of the EPDM composites and play a reinforcing role, and the sp<jats:sup>2</jats:sup> hybrid structure of graphite can trap and quench free radicals, delayed the irradiation aging of EPDM. UG/EPDM composites irradiation stability was improved with increasing graphite dispersion in EPDM matrix. Under the cumulative irradiation dose of 1000 kGy, the tensile strength of blank sample and UG‐2.6 μm<jats:sup>−10</jats:sup> decreased by 51.1% and 17.7%, respectively, and the hardness increased by 8.7% and 4.9%, respectively. The energy storage modulus and the corresponding glass transition temperature (<jats:italic>Tg</jats:italic>) of UG/EPDM composites enhanced with graphite, while the thermal stability of the composites was improved.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":"36 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141948036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Polymers and nanomaterials: Environmental remediation and health","authors":"Muthusamy Govarthanan","doi":"10.1002/pat.6528","DOIUrl":"https://doi.org/10.1002/pat.6528","url":null,"abstract":"","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":"23 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141948037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Shape memory liquid crystalline polymers: Stimuli‐responsiveness, advanced technologies, and key applications","authors":"Peerawat Prathumrat, Mostafa Nikzad, Reza Arablouei, Manunya Okhawilai","doi":"10.1002/pat.6531","DOIUrl":"https://doi.org/10.1002/pat.6531","url":null,"abstract":"Liquid crystalline polymers (LCPs) represent a distinct class of materials that have garnered significant interest for their utilisation in diverse industrial and engineering applications. A prominent attribute of LCPs is their stimuli‐responsiveness. These materials can undergo deformation and subsequently recover their original shapes when subjected to external stimuli such as heat, light, and electromagnetic fields. The molecular structure of LCPs consists of mesogens and flexible tails, mirroring the fundamental molecular mechanism found in shape memory polymers. This characteristic positions LCPs as promising materials for shape memory applications. This article provides a comprehensive review of LCPs, focusing on their various forms of stimuli‐responsiveness. In addition, it delves into the application of additive manufacturing and machine learning technologies in the context of shape memory LCPs. Finally, the article concludes by exploring the critical applications of LCPs as shape memory materials.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":"4 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141948038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sadaf Shirazi, Alireza Shakeri, Rozgol Bonsale, Reza Razavi, Hasan Salehi
{"title":"Zwitterionic ZnO nanoparticles: Novel additives to synthesize high performance and fouling resistance thin‐film nanocomposite forward osmosis membrane","authors":"Sadaf Shirazi, Alireza Shakeri, Rozgol Bonsale, Reza Razavi, Hasan Salehi","doi":"10.1002/pat.6529","DOIUrl":"https://doi.org/10.1002/pat.6529","url":null,"abstract":"Meeting the ever‐increasing need for clean water requires developing highly effective thin‐film nanocomposite (TFN) membranes with outstanding water permeability, selectivity, and good fouling resistance. In this work, ZnO nanoparticles were synthesized and coated with zwitterionic lysine amino acid (ZnO‐lysine) and then incorporated into a polyamide layer to improve their performance as well as to alleviate fouling. The organic shell on the ZnO‐lysine surface promoted the PA layer's interaction with ZnO‐lysine nanoparticles. TFN membranes demonstrated hydrophilic and smooth polyamide layers with improved permeability and selectivity. In particular, the TFN membranes' enhanced hydrophilicity and smooth surface synergized fouling reduction. In comparison to the bare TFC membrane (12.2 LMH) using 1 M NaCl as the draw solution, the ZnO‐lysine‐modified TFN‐ZL.400 membrane (21.1 LMH) yields a water flux that is 75% greater. In the polyamide layer, the zwitterionic functional groups of ZnO‐lysine not only improved the nanoparticles' chemical compatibility, preventing the creation of nonselective gaps, but also enhanced water flux and salt rejection. This study provides insight into the creation of zwitterionic‐functionalized nanoparticles that can successfully address fouling issues and trade‐off restrictions between selectivity and permeability in TFN membranes.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":"21 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141881185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Dinesh, B. Sakthivel, S. Vijayakumar, S. Snega, Mohammed F. Albeshr, L. Praburaman, S. Prathipkumar, E. Vidhya
{"title":"Development of polyvinylpyrrolidone‐based zinc oxide nanocomposites: An outstanding and inexpensive biocide for use on germicidal and photodegradation vitality","authors":"R. Dinesh, B. Sakthivel, S. Vijayakumar, S. Snega, Mohammed F. Albeshr, L. Praburaman, S. Prathipkumar, E. Vidhya","doi":"10.1002/pat.6527","DOIUrl":"https://doi.org/10.1002/pat.6527","url":null,"abstract":"An environmentally sustainable method was used to synthesize a novel class of biopolymer‐based PVP/ZnO nanocomposites (NCs) with pomegranate peel residue extract as a biosurfactant, zinc acetate as the primary material, PVP as the stabilizing substance and sodium hydroxide as the resolving product. Significant global concerns for human health and the environment are caused by the presence of disease‐causing microbes and toxic dyes in water supplies. Zinc oxide nanoparticles (ZnO NPs) exhibit exceptional photocatalytic and antibacterial efficacy toward reactive dye and bacterial strains. The microstructure of the NPs was analyzed by employing X‐ray diffraction (XRD), with a size of 20.24 nm. Investigation using field emission scanning electron microscopy (FE‐SEM) revealed the appearance of nanoflakes‐shaped PVP‐ZnO nanoparticles with a size ranging from 20 to 30 nm. The mixed composition of the nanoparticles was demonstrated using Fourier Transform Infrared Spectroscopy (FT‐IR), and an intensity of absorption at 346 nm was seen using UV–Vis spectroscopy. The PVP‐ZnO nanoparticles demonstrated exceptional photocatalytic efficacy, destroying about 90% of the reactive MB dye. The NPs exhibited antibacterial activity against <jats:italic>E. aerogenes</jats:italic>, <jats:italic>S. aureus</jats:italic>, <jats:italic>P. aeruginosa</jats:italic>, and <jats:italic>K. pneumonia</jats:italic>, with boundaries of inhibition of 21, 19, 18, and 16 mm, correspondingly. The results indicate that PVP‐ZnO nanoparticles may be efficiently employed for water purification, successfully removing both dye and pathogenic pollutants.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":"183 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141881192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hossein Pahlevani, Mahsa Baghban Salehi, Farzin Saghandali, Rouzbeh G. Moghanloo, Vahid Taghikhani
{"title":"Profile control and oil displacement in high temperature and salinity reservoirs: Evaluation of deformable microgel system","authors":"Hossein Pahlevani, Mahsa Baghban Salehi, Farzin Saghandali, Rouzbeh G. Moghanloo, Vahid Taghikhani","doi":"10.1002/pat.6530","DOIUrl":"https://doi.org/10.1002/pat.6530","url":null,"abstract":"Viscoelastic microgels have been successfully used as profile control and enhanced oil recovery agents in oil reservoirs. In this paper, a novel microgel made of acrylamide monomer and 2‐Acrylamido‐2‐methylpropane sulfonic acid was synthesized using inverse emulsion polymerization. The spherical shape of microgel particles and their corresponding size distribution were confirmed by series of microscopic images. Additional tests such as morphology and swelling tests indirect characterization of structural properties via rheology tests, and viscoelastic tests of spherical microgels were performed for 5 different aqueous solutions. The flow curve of all aqueous solutions illustrated three areas of shear thinning, static state, and shear thickening representing presence of dispersed system and confirming formation of microgel suspension. According to results of the oscillatory frequency sweep test “superior” viscoelastic properties were demonstrated. Also, no structural fracture occurred in the frequency range of 0.01–100 Hz with elastic modulus of 105, 3.63, 2.4, 3, and 1.6, respectively. Furthermore, excellent swelling properties were observed in presence of monovalent, divalent ions, and brine. In addition, performance of microspheres microgel suspension (MMS) in formation water were evaluated using a micro and macro floodingexperiment setup. Due to the elastic modulus of microgel system (2.4 Pa) and its viscoelastic properties, deformation capability and the ability to maintain initial shape of microgels, the oil recovery was increased to 83.77, which was 2.02 times more than that of water flooding displacement. The MMS macro‐flooding test indicated the alteration of the core from oil‐wet to water‐wet. Also, the pressure drop created during water injection compared to during oil injection increased from 0.67 to 9.62 after treatment with MMS. The characteristics and displacement performance of a deformable microgel make it a good candidate for in‐depth gel treatment and sweep efficiency improvement.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":"44 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141881007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Danay Manzo Jaime, Sílvia D. A. S. Ramôa, Leonardo Santana, Claudia Merlini, Jorge Lino Alves, Guilherme Mariz de Oliveira Barra
{"title":"Characterization of partially soluble filament for use in material extrusion 3D printing technology","authors":"Danay Manzo Jaime, Sílvia D. A. S. Ramôa, Leonardo Santana, Claudia Merlini, Jorge Lino Alves, Guilherme Mariz de Oliveira Barra","doi":"10.1002/pat.6522","DOIUrl":"https://doi.org/10.1002/pat.6522","url":null,"abstract":"The implementation of material extrusion 3D printing for technological purposes necessitates a thorough understanding of the chosen material. This study conducted a comprehensive analysis of Gel‐Lay™ filament, providing valuable insights for future research directed towards the application of the characterized filament. Gel‐Lay™ filament comprises a blend of polyvinyl alcohol (PVA) and a thermoplastic elastomer (TPE). The material underwent evaluation based on its morphology, chemical composition, thermal behavior, and dynamic‐mechanical properties. The characterization process yielded insights into the type of TPE material and transition temperatures, offering avenues for enhancing the printing process. Furthermore, the study explored the process of PVA extraction from printed parts using three different methodologies to determine the approach resulting in the most significant difference between the mass of the as‐printed part and the mass after PVA extraction. With PVA removal, the parts became porous which makes this material very promising for different applications.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":"16 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141771115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ramkumar Yadav, Sonu Saini, Sonam Sonwal, Anoj Meena, Yun Suk Huh, Eugenio Brambilla, Andrei Cristian Ionescu
{"title":"Optimization and ranking of dental restorative composites by ENTROPY‐VIKOR and VIKOR‐MATLAB","authors":"Ramkumar Yadav, Sonu Saini, Sonam Sonwal, Anoj Meena, Yun Suk Huh, Eugenio Brambilla, Andrei Cristian Ionescu","doi":"10.1002/pat.6526","DOIUrl":"https://doi.org/10.1002/pat.6526","url":null,"abstract":"Resin‐based composites, now the most prevalent material for restorative dental treatments, are available in a multitude of types. Next‐generation composites are designed to be bio interactive, solving issues such as secondary caries and mechanical failures, thus prolonging the restoration lifespan. To facilitate the discrimination of the bio interactive composite's performance and the identification of the optimal composition, we tested the VIKOR method for multi‐criteria decision‐making analysis. This study encompassed 12 performance parameters and 5 experimental dental composites. We measured density, void content, water sorption, water solubility, polymerization shrinkage, depth of cure, degree of conversion, hardness, compressive strength, and surface roughness as performance parameters, and we tested a conventional BisGMA‐TEGDMA resin blend filled with yttria‐stabilized zirconia (20 wt.%) and tricalcium phosphate. The alignment between computational methods and MATLAB‐based calculations validated the robustness of the assessment, verifying the significance of the conclusions drawn from this comprehensive analysis. Both methods (ENTROPY‐VIKOR and VIKOR‐MATLAB) ranked TZC0 as the top composite. This research provided a comprehensive understanding of the complex relationship between material composition, performance attributes, and optimization strategies in dental restorative composites, offering valuable insights for future advancements in restorative dentistry.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":"59 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141770971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sulfur as an effective sensitizer for natural rubber vulcanized via electron beam irradiation","authors":"Mili Purbaya, Takaomi Kobayashi, Nuatawan Thamrongsiripak, Chesidi Hayichelaeh, Kanoktip Boonkerd","doi":"10.1002/pat.6523","DOIUrl":"https://doi.org/10.1002/pat.6523","url":null,"abstract":"A sensitizer or crosslinking promoter must be utilized to improve electron beam irradiation (EBI) vulcanization and achieve optimal results. This work investigated the effect of sensitizers, that is, sulfur and trimethylolpropane trimethacrylate (TMPT), on the properties of EBI‐vulcanized natural rubber (NR). The experiments focused on analyzing the effect of different amounts of sensitizers, that is, 2 and 3 phr, on the swelling, crosslink density, entanglement, and mechanical properties of NR latex. A sample without sensitizers was taken as a reference. Results revealed that the crosslink density of the samples with sensitizers had improved compared with that of the sample without a sensitizer. The sample with sulfur exhibited higher crosslink density than the NR with TMPT. The sulfur‐containing NR exhibited superior mechanical properties, i.e., modulus, tensile strength, and tear strength, as its crosslink density increased. In addition, increasing the sulfur content reduced the crosslink density of the NR latex, resulting in inferior mechanical properties. Furthermore, the different forms, that is, latex and film, of NR were compared. The latex form revealed higher crosslink density than the film form, thus presenting high mechanical properties because it contained water, which could induce the formation of free radical species and enhance crosslinking.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":"60 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141770972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}