Polymers for Advanced Technologies最新文献

筛选
英文 中文
Impact of concentration and aging time of pea starch‐based polymeric solutions on the fabrication of electrospun nanofibers 豌豆淀粉基聚合物溶液的浓度和老化时间对电纺纳米纤维制造的影响
IF 3.4 4区 工程技术
Polymers for Advanced Technologies Pub Date : 2024-06-24 DOI: 10.1002/pat.6479
Elder Pacheco da Cruz, Felipe Nardo dos Santos, Jaqueline Ferreira de Souza, Estefania Júlia Dierings de Souza, Laura Martins Fonseca, André Ricardo Fajardo, Elessandra Rosa da Zavareze, Alvaro Renato Guerra Dias
{"title":"Impact of concentration and aging time of pea starch‐based polymeric solutions on the fabrication of electrospun nanofibers","authors":"Elder Pacheco da Cruz, Felipe Nardo dos Santos, Jaqueline Ferreira de Souza, Estefania Júlia Dierings de Souza, Laura Martins Fonseca, André Ricardo Fajardo, Elessandra Rosa da Zavareze, Alvaro Renato Guerra Dias","doi":"10.1002/pat.6479","DOIUrl":"https://doi.org/10.1002/pat.6479","url":null,"abstract":"Polymer concentration and aging time of polymeric solutions are crucial factors that can influence their viscosity, playing an essential role in the fabrication of electrospun nanofibers. Based on this, herein we evaluated the impact of aging time (24 and 48 h) and pea starch concentration (10%, 20%, and 30%, wt/vol) on the polymeric solutions to produce electrospun nanofibers. Solutions were evaluated by rheology, electrical conductivity, and degree of substitution. The nanofibers were analyzed by morphology, size distribution, chemical nature, and thermal properties. The degree of substitution of starches varied from 1.17 to 1.56. Overall, electrical conductivity decreased with increasing starch concentration and aging time of the polymeric solutions. The use of 10% starch displayed a transition from capsules to fibers, while 20% and 30% starch were able to manufacture homogenous, cylindrical, and random nanofibers with diameters varying from 89 to 373 nm. A significant impact of viscosity was not observed; on the other hand, aging time increased the average diameter of nanofibers. Besides, the fabricated nanofibers showed a lower decomposition temperature than raw starch. The fabricated nanofibers have great potential as wall materials for the encapsulation of different compounds and applications in the biomedical and food sectors.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":"80 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of improved electric field distribution on jet motion, fiber morphology, and properties of electrospun thermoplastic polyurethane fibrous membrane 改善电场分布对电纺热塑性聚氨酯纤维膜的喷射运动、纤维形态和性能的影响
IF 3.4 4区 工程技术
Polymers for Advanced Technologies Pub Date : 2024-06-24 DOI: 10.1002/pat.6483
Xiang Li, Liqin Lou
{"title":"Effect of improved electric field distribution on jet motion, fiber morphology, and properties of electrospun thermoplastic polyurethane fibrous membrane","authors":"Xiang Li, Liqin Lou","doi":"10.1002/pat.6483","DOIUrl":"https://doi.org/10.1002/pat.6483","url":null,"abstract":"Electric field plays a pivotal role in electrospinning to produce the desired micro and nanofibers, hence, a tricipital‐needle spinneret was developed to improve electric field distribution and productivity in this work. The effects of electric field distribution induced by spinneret configuration on jet motion, fiber morphology, and properties of electrospun TPU fibrous membrane at different applied voltages were investigated by simulation and experiment. The simulation results show that the designed tricipital‐needle spinneret weakens the electric field near the needle tip and strengthens the electric field in the whipping region in comparison to the single‐needle spinneret, exhibiting a relatively uniform electric field distribution. The experimental results demonstrate that the fiber diameter prepared by the tricipital‐needle spinneret at the corresponding voltage is smaller than that of the single‐needle spinneret due to the improved electric field distribution. Moreover, the fibrous membrane prepared by the tricipital‐needle spinneret shows excellent tensile properties (7 MPa tensile stress and 401% breaking elongation), air permeability (85.32 mm s<jats:sup>−1</jats:sup>) and water vapor permeability (6.7 kg m<jats:sup>−2</jats:sup> d<jats:sup>−1</jats:sup>). Therefore, the electrospinning system with the tricipital‐needle spinneret not only increases the fiber productivity, but also improves the electric field distribution and endows the fibrous membrane with better properties, which can widen the applications of electrospun TPU fibrous membrane and also provides a new approach for the performance design of other electrospun fibers.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":"21 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of crystalline phase formed by compound flame retardant on the flame retardancy and ceramization of polyethylene composites 复合阻燃剂形成的结晶相对聚乙烯复合材料阻燃性和陶瓷化的影响
IF 3.4 4区 工程技术
Polymers for Advanced Technologies Pub Date : 2024-06-21 DOI: 10.1002/pat.6485
Xiangbin Zhang, Lang Xu, Qing Sun, Jian Zhang, Jiawei Sheng
{"title":"Effect of crystalline phase formed by compound flame retardant on the flame retardancy and ceramization of polyethylene composites","authors":"Xiangbin Zhang, Lang Xu, Qing Sun, Jian Zhang, Jiawei Sheng","doi":"10.1002/pat.6485","DOIUrl":"https://doi.org/10.1002/pat.6485","url":null,"abstract":"Ceramic polyolefin composites have the capability to transform into hard ceramics when exposed to fire conditions. During the ceramization process, the formation of new crystalline phase plays a crucial role in enhancing flame‐retardant and ceramifiable properties. Consequently, ceramic polyolefin composites show great potential for the applications in fire‐resistant wires and cables. In this article, the incorporation of the compound flame retardant consisting of ammonium polyphosphate/melamine cyanurate/zinc borate (APP/MCA/ZB) was found to enhance the flame retardancy and ceramization of polyethylene/wollastonite fiber/phosphate glass frits (PE/WF/PGF) composites. The results indicated that ceramifiable flame‐retarding PE composites with compound flame retardant exhibited superior flame retardancy compared to pure PE and PE composites with a single flame retardant. Specifically, the limiting oxygen index (LOI) was significantly increased to 26.8%, and the vertical combustion test rating in UL‐94 (test for flammability of plastic materials for parts in devices and appliances) reached V‐0. During the heating process, ZB thermally decomposed to produce 2ZnO ⋅ 3B<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>, which reacted with CaSiO<jats:sub>3</jats:sub> to form a silicate glass intermediate phase (CaO ⋅ SiO<jats:sub>2</jats:sub> ⋅ 2ZnO ⋅ 3B<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>). APP thermally decomposed to produce (HPO<jats:sub>3</jats:sub>)<jats:sub>n</jats:sub>, which reacted with 2ZnO ⋅ 3B<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> to form a phosphate glass intermediate phase (nP<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub> ⋅ 2ZnO ⋅ 3B<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>). These two glass phases experienced a eutectic reaction with WF, ultimately producing the formation of a new crystalline phase of calcium zinc phosphate (CZP, Ca<jats:sub>19</jats:sub>Zn<jats:sub>2</jats:sub>(PO<jats:sub>4</jats:sub>)<jats:sub>14</jats:sub>). This newly formed CZP phase made sintered ceramics more compact and had higher flexural strength. The flexural strength of ceramic residues after sintering was 11.68 MPa, meeting the requirements for practical applications.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":"141 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141523178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of bioplastics as an alternative to petrochemical plastics: Its types, structure, characteristics, degradation, standards, and feedstocks 综述作为石化塑料替代品的生物塑料:生物塑料的类型、结构、特性、降解、标准和原料
IF 3.4 4区 工程技术
Polymers for Advanced Technologies Pub Date : 2024-06-20 DOI: 10.1002/pat.6482
T. Angelin Swetha, Abhispa Bora, V. Ananthy, Kumar Ponnuchamy, Govarthanan Muthusamy, A. Arun
{"title":"A review of bioplastics as an alternative to petrochemical plastics: Its types, structure, characteristics, degradation, standards, and feedstocks","authors":"T. Angelin Swetha, Abhispa Bora, V. Ananthy, Kumar Ponnuchamy, Govarthanan Muthusamy, A. Arun","doi":"10.1002/pat.6482","DOIUrl":"https://doi.org/10.1002/pat.6482","url":null,"abstract":"Plastic is a widely available material in every aspect of life, and its long‐term usage is an important threat to the environment. An enormous quantity of plastic waste has been discharged into the environment throughout the world, resulting in global white pollution. The weathering of accumulated plastic waste in the environment, which can further break down into small fragments like microplastics and nanoplastics, will harm the ecosystem and humans. Therefore, the production and disposal of plastics need to be considered. Bioplastics are increasingly being used as an alternative to conventional plastics; their primary purpose is to solve pollution‐related problems with plastics. Bioplastics (BPs) are an adequate substitute for traditional plastics since they have less carbon footprint and are readily biodegradable, but not all bioplastics can degrade entirely in the natural environment. Due to less environmental impact, bioplastics are defined as polymers produced by using renewable feedstocks or by microorganisms. BP has a wide range of applications in the medical, automotive, and food packaging industries, and it has the potential impact on effect of development of low‐carbon environment. The standards bioplastics must meet to be called compostable or biodegradable are determined by certified worldwide standard processes. The primary purpose of this review is to focus on bioplastics as an alternative tool to plastic—its types, structure, characteristics, degradation behavior, standard techniques, feedstock used for the production of bioplastic, process for its development, and limitation of bioplastics.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":"52 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141523181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of benzothiocyanine‐carboxymethyl cellulose composite film and its antimicrobial properties 苯并硫氰-羧甲基纤维素复合薄膜的制备及其抗菌性能
IF 3.4 4区 工程技术
Polymers for Advanced Technologies Pub Date : 2024-06-20 DOI: 10.1002/pat.6486
Long Wang, Chaojie Li, Xue Li, Zi'ang Xia, Jingxue Yang, Baoming Xu, Heng Zhang
{"title":"Preparation of benzothiocyanine‐carboxymethyl cellulose composite film and its antimicrobial properties","authors":"Long Wang, Chaojie Li, Xue Li, Zi'ang Xia, Jingxue Yang, Baoming Xu, Heng Zhang","doi":"10.1002/pat.6486","DOIUrl":"https://doi.org/10.1002/pat.6486","url":null,"abstract":"Cellulose has a wide range of uses. It could be modified to create cellulose‐based hydrophobic materials and cellulose‐based conductive and stable flexible films, but it did not have antibacterial properties and was susceptible to bacterial erosion. In order to improve the utilization of cellulose materials and broaden the application of cellulose materials, cellulose could be given certain antibacterial properties by combining it with antimicrobial agents. This study focused on creating an organic antimicrobial agent, Benzothiocyanine (TCMTB), from CH<jats:sub>2</jats:sub>ClBr, and then developing a TCMTB‐CMC composite antimicrobial film by combining TCMTB with CMC. The successful synthesis of TCMTB was confirmed through NMR hydrogen spectroscopy testing. By varying the proportions of TCMTB in CMC, three types of composite antimicrobial cellulose film were produced. The study also assessed the impact of TCMTB on the mechanical strength of CMC film and tested the antimicrobial effectiveness of the composite film using the plate counting method. Results showed that the composite film had high inhibition rates, with 96.2% against Escherichia coli and 98.6% against Staphylococcus aureus. To establish a theoretical foundation for its use in seed encapsulation, leather preservation, and other applications.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":"23 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141523179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nano‐enhanced epoxy sandwich composites: Investigating mechanical properties for future aircraft construction 纳米增强环氧夹层复合材料:研究未来飞机制造的机械性能
IF 3.4 4区 工程技术
Polymers for Advanced Technologies Pub Date : 2024-06-20 DOI: 10.1002/pat.6492
Megavannan Mani, M. Thiyagu, Rhoda Afriyie Mensah, Oisik Das, Vigneshwaran Shanmugam
{"title":"Nano‐enhanced epoxy sandwich composites: Investigating mechanical properties for future aircraft construction","authors":"Megavannan Mani, M. Thiyagu, Rhoda Afriyie Mensah, Oisik Das, Vigneshwaran Shanmugam","doi":"10.1002/pat.6492","DOIUrl":"https://doi.org/10.1002/pat.6492","url":null,"abstract":"The aviation sector is continually seeking ways to reduce the weight of aircraft structures without compromising their mechanical integrity. Lightweight materials, such as advanced epoxy sandwich composites with hybrid nanostructures, have the potential to significantly contribute to fuel efficiency, thereby addressing environmental concerns and operational costs. This research investigates the mechanical properties of hybrid sandwich polymer composites filled with silica nanoparticles (SNiPs). Epoxy isocyanate (PU) foam sandwich composites were fabricated with kevlar fiber, carbon fiber, and glass fiber, constructed by alternating inclined interply bidirectional fiber and foam layers. SNiPs were introduced into the composite system at varying percentages, such as 0, 2, 4, and 6 wt%. The study employs a systematic approach, incorporating experimental testing, to assess key mechanical parameters, including tensile strength, flexural strength, and shear strength. The test results indicate that the incorporation of SNiPs improved the mechanical properties of the composites, leading to enhanced strength, toughness, and modulus of elasticity. Incorporation of composite laminates with 4 wt% SiNPs resulted in improved three‐point bending, tensile, shear, and torsional strengths, with maximum values of ca. 64, ca. 5, ca. 2 MPa, and ca. 22 Nm, respectively. The findings contribute to the ongoing pursuit of materials that can meet the stringent demands of modern aviation, ultimately paving the way for advancements in aircraft construction and design.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":"39 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141523182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of tetrahydrofuran on the anionic copolymerization of 4‐trimethylsilylstyrene with isoprene 四氢呋喃对 4-三甲基硅基苯乙烯与异戊二烯阴离子共聚的影响
IF 3.4 4区 工程技术
Polymers for Advanced Technologies Pub Date : 2024-06-20 DOI: 10.1002/pat.6478
Dominik A. H. Fuchs, Shivani P. Wadgaonkar, Axel H. E. Müller, Holger Frey
{"title":"Effect of tetrahydrofuran on the anionic copolymerization of 4‐trimethylsilylstyrene with isoprene","authors":"Dominik A. H. Fuchs, Shivani P. Wadgaonkar, Axel H. E. Müller, Holger Frey","doi":"10.1002/pat.6478","DOIUrl":"https://doi.org/10.1002/pat.6478","url":null,"abstract":"The statistical anionic copolymerization of 4‐trimethylsilylstyrene (TMSS) with isoprene (I) in cyclohexane was investigated using in situ near‐infrared (NIR) spectroscopy in the presence of various amounts of the polar modifier tetrahydrofuran (THF). Polymers with narrow molecular weight distribution of 85–138 kg/mol and dispersities of 1.09–1.22 were obtained. By increasing modifier content, the reactivity ratios can be adjusted over a wide range from <jats:italic>r</jats:italic><jats:sub>TMSS</jats:sub> &lt; <jats:italic>r</jats:italic><jats:sub>I</jats:sub> to <jats:italic>r</jats:italic><jats:sub>TMSS</jats:sub> &gt;&gt; <jats:italic>r</jats:italic><jats:sub>I</jats:sub>. Compared to the system styrene/isoprene (S/I) only a minute amount of modifier (0.5 eq THF relative to lithium) is sufficient to alter the reactivity ratios, resulting in an ideally random copolymerization, which validates the higher reactivity of TMSS compared to styrene. Using these reactivity ratios, molar and volume composition gradients were calculated. Additionally, the glass transition temperature and microstructure of the polyisoprene units were investigated via differential scanning calorimetry and proton nuclear magnetic resonance. The results are encouraging for the use of these materials in high‐end applications like membranes.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":"20 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141523183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selenium‐chitosan engineered nanocomposite as efficient formulated fish diet evaluated for sustainable aquaculture practice of Oreochromis niloticus (Nile tilapia) fishes 硒-壳聚糖工程纳米复合材料作为高效配方鱼食用于尼罗罗非鱼可持续养殖实践的评估
IF 3.4 4区 工程技术
Polymers for Advanced Technologies Pub Date : 2024-05-31 DOI: 10.1002/pat.6436
Latha Srinivasan, Abinaya Gayathri, Kumaravel Kaliaperumal, Rajasekar Thirunavukkarasu, Arumugam Suresh, Kumaran Subramanian, Sandhanasamy Devanesan, Mohamad S. AlSalhi, Sampath Shobana
{"title":"Selenium‐chitosan engineered nanocomposite as efficient formulated fish diet evaluated for sustainable aquaculture practice of Oreochromis niloticus (Nile tilapia) fishes","authors":"Latha Srinivasan, Abinaya Gayathri, Kumaravel Kaliaperumal, Rajasekar Thirunavukkarasu, Arumugam Suresh, Kumaran Subramanian, Sandhanasamy Devanesan, Mohamad S. AlSalhi, Sampath Shobana","doi":"10.1002/pat.6436","DOIUrl":"https://doi.org/10.1002/pat.6436","url":null,"abstract":"<jats:italic>Oreochromis niloticus</jats:italic> a Nile tilapia fish is widely used for fish culture practice in many countries for its easy acclimatization and high yield at a short pace of time. Selenium‐chitosan (SeCh) nanoparticles are efficiently used in agriculture, medicine, and aquaculture practices in several studies. The significant approach of Selenium‐Chitosan incorporated fish feed will be evaluated in the present study to achieve the better aquaculture practice in future. In the present study, SeCh nanoparticle was chemically synthesized and incorporated with formulated fish feed. Selenium formulated fish feed contains 31.49 g of carbohydrates and 41.52 g of proteins. SeCh‐fed <jats:italic>O. niloticus</jats:italic> fingerlings exhibited significantly increased specific growth rates in terms of weight gain, and feed conversion ratio. Chemical characterization of SeChNPs through FTIR spectroscopy indicates the presence of an adjuvant combination of selenium and chitosan presence through functional groups of COO stretch, CH, CC, and CN stretch representing at 3226, 2878, and 1734 cm<jats:sup>−1</jats:sup>, respectively. Scanning electron microscopy (SEM) and EDX analysis revealed the structural properties of SeChNPs as a fibrous pattern that contains Carbon, Oxygen, and Selenium elements as predominant peak values. SeChNPs incorporated fish feed has higher protein content which is a standard hallmark for a fish feed and an essential prerequisite for fish growth. The formulated SeCh fish feed in the present study is an innovative approach which can be taken further for higher level testing and processing for developing as a better fish feed in terms of feasible and efficient fish growth enhancer.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":"22 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141188749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Augmenting barrier efficiency in clay‐based starch composite films for enhanced packaging sustainability 提高粘土基淀粉复合膜的阻隔效率,增强包装的可持续性
IF 3.4 4区 工程技术
Polymers for Advanced Technologies Pub Date : 2024-05-31 DOI: 10.1002/pat.6458
Priyanka Kumari, Neeraj Kumari, Chandra Mohan, Mysoon M. Al‐Ansari, Saurav Dixit
{"title":"Augmenting barrier efficiency in clay‐based starch composite films for enhanced packaging sustainability","authors":"Priyanka Kumari, Neeraj Kumari, Chandra Mohan, Mysoon M. Al‐Ansari, Saurav Dixit","doi":"10.1002/pat.6458","DOIUrl":"https://doi.org/10.1002/pat.6458","url":null,"abstract":"The pervasive utilization of plastic as a cost‐effective packaging material for food has led to environmental concerns, primarily due to its non‐biodegradable nature and the ensuing release of carbon dioxide gas that contributes to global warming. In response to these challenges, researchers have shifted their focus toward biopolymers to develop eco‐friendly packaging solutions. The present study introduces a novel approach to study the release of micronutrient (Fe) from clay free starch‐glycerol film and clay‐starch‐glycerol composite film. The structural composition and characteristics of the synthesized film are meticulously examined using x‐ray diffraction (XRD), ATR, scanning electron microscopy and transmission electron microscopy analytical techniques. Notably, XRD analysis reveals a significant interaction between the starch chains and Mt through hydrogen bonding, indicative of starch and glycerol intercalation within the nanoclay gallery—a phenomenon further corroborated by IR spectra analysis. The nanoclay‐infused starch/glycerol composite film exhibits a noteworthy 2.22‐fold increase in water vapor permeability compared to clay free film, attributed to the formation of a convoluted diffusion path indicating the enhancement of the barrier performance of starch‐based films. Comparative evaluations against earlier studies are undertaken to elucidate the advancements in barrier properties, subsequently elucidating the underlying mechanisms through analytical interpretations. From the release study, the release of Fe<jats:sup>2+</jats:sup> from the film with clay was observed to be more prolonged compared to a film without clay. As a result, the Montmorillonite clay–polymer composite film was selected for coating rice seeds using the dip‐coating method.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":"82 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141188746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of boron nitride nanoplates on the dielectric and mechanical properties of carbon nanotubes/silicone rubber composites 氮化硼纳米板对碳纳米管/硅橡胶复合材料介电性能和机械性能的影响
IF 3.4 4区 工程技术
Polymers for Advanced Technologies Pub Date : 2024-05-31 DOI: 10.1002/pat.6463
Yu Zeng, Lu Tang
{"title":"Effects of boron nitride nanoplates on the dielectric and mechanical properties of carbon nanotubes/silicone rubber composites","authors":"Yu Zeng, Lu Tang","doi":"10.1002/pat.6463","DOIUrl":"https://doi.org/10.1002/pat.6463","url":null,"abstract":"Carbon nanotubes (CNTs) have aroused great attentions in silicone rubber (SR) composites due to the excellent electrical and mechanical properties. However, the distribution of CNTs is not ideal because of the agglomeration effect of nanomaterials. Incorporating different dimensional nanofillers may be a solution. In this work, two‐dimensional boron nitride (BN) was added to fabricate CNTs/BN/SR composites. The results showed that BN could benefit the dispersion of CNTs and improve the dielectric and mechanical behaviors of the composites. Large dielectric constant (5.35, 92% more than pure SR) with extremely low loss tangent (0.00108) was obtained in the SR composites incorporated with 2 wt% CNTs and 5 wt% BN. High tensile stress (836 kPa) and elongation at break (332%) were also achieved, with a low elastic modulus of 557 kPa. Besides, the CNTs/BN/SR composites had thermal stability up to 400°C. Thus, enhanced dielectric and mechanical properties were achieved in CNTs/BN/SR composites by incorporating different dimensional nanofillers, which have great potential applications in dielectric elastomer composites.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":"67 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141188946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信